Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(12): e0295941, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38134013

RESUMO

This work analyzes the stability and performance of an offshore solar-concentrated ocean thermal energy conversion system (SC-OTEC) tied to an onshore AC grid. The OTEC is a system where electricity is generated using small temperature differences between the warm surface and deep cold ocean water. Existing control methods for SC-OTEC systems lack coordination, hindering dynamic stability and effective damping for the synchronous generator (SG). These methods struggle to quickly adapt to sudden disturbances and lack the capability to adequately reject or compensate for such disturbances due to complex control constraints and computational demands. To this regard, a control strategy combining sliding mode control (SMC) and a power system stabilizer (PSS) to improve the SC-OTEC dynamic stability and damping features for the SG. Moreover, an auxiliary secondary automatic voltage regulator is assembled with a non-linear exciter system to provide damping features. The proposed PID-PSS and secondary AVR controller gains are adaptively tuned using a modified whale optimization algorithm with the balloon effect modulation. The studied SC-OTEC is tested through MATLAB/Simulink under a severe 3ϕ short-circuit fault, solar radiation variations, and a change in surface seawater temperature as well as changes in local loads. The final findings approved that the proposed control strategy preserves a strong performance and can mimic effectively the proposed SC-OTEC damping compared to the conventional system.


Assuntos
Aeronaves , Algoritmos , Animais , Cetáceos , Sistemas Computacionais , Eletricidade , Excipientes , Água
2.
PLoS One ; 18(10): e0293246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37862365

RESUMO

Due to the unpredictability of the majority of green energy sources (GESs), particularly in microgrids (µGs), frequency deviations are unavoidable. These factors include solar irradiance, wind disturbances, and parametric uncertainty, all of which have a substantial impact on the system's frequency. An adaptive load frequency control (LFC) method for power systems is suggested in this paper to mitigate the aforementioned issues. For engineering challenges, soft computing methods like the bat algorithm (BA), where it proves its effectiveness in different applications, consistently produce positive outcomes, so it is used to address the LFC issue. For online gain tuning, an integral controller using an artificial BA is utilized, and this control method is supported by a modification known as the balloon effect (BE) identifier. Stability and robustness of analysis of the suggested BA+BE scheme is investigated. The system with the proposed adaptive frequency controller is evaluated in the case of step/random load demand. In addition, high penetrations of photovoltaic (PV) sources are considered. The standard integral controller and Jaya+BE, two more optimization techniques, have been compared with the suggested BA+BE strategy. According to the results of the MATLAB simulation, the suggested technique (BA+BE) has a significant advantage over other techniques in terms of maintaining frequency stability in the presence of step/random disturbances and PV source. The suggested method successfully keeps the frequency steady over I and Jaya+BE by 61.5% and 31.25%, respectively. In order to validate the MATLAB simulation results, real-time simulation tests are given utilizing a PC and a QUARC pid_e data acquisition card.


Assuntos
Algoritmos , Modelos Teóricos , Simulação por Computador , Fontes de Energia Elétrica , Fontes Geradoras de Energia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...