Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 8(18): 4565-4572, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28880086

RESUMO

The adsorption and photochemistry of CO on rutile TiO2(110) are studied with scanning tunneling microscopy (STM), temperature-programmed desorption, and angle-resolved photon-stimulated desorption (PSD) at low temperatures. Site occupancies, when weighted by the concentration of each kind of adsorption site on the reduced surface, show that the adsorption probability is the highest for the bridging oxygen vacancies (VO). The probability distribution for the different adsorption sites corresponds to very small differences in CO adsorption energies (<0.02 eV). UV irradiation stimulates diffusion and desorption of CO at low temperature. CO photodesorbs primarily from the vacancies with a bimodal angular distribution, indicating some scattering from the surface, which also leads to photostimulated diffusion. Hydroxylation of VO's does not significantly change the CO PSD yield or the angular distribution, which suggests that photodesorption can be initiated by recombination of photogenerated holes with excess electrons localized near the charged point defect (either VO or bridging hydroxyl).

2.
Proc Natl Acad Sci U S A ; 114(8): 1801-1805, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28167775

RESUMO

Understanding adsorbed water and its dissociation to surface hydroxyls on oxide surfaces is key to unraveling many physical and chemical processes, yet the barrier for its deprotonation has never been measured. In this study, we present direct evidence for water dissociation equilibrium on rutile-TiO2(110) by combining supersonic molecular beam, scanning tunneling microscopy (STM), and ab initio molecular dynamics. We measure the deprotonation/protonation barriers of 0.36 eV and find that molecularly bound water is preferred over the surface-bound hydroxyls by only 0.035 eV. We demonstrate that long-range electrostatic fields emanating from the oxide lead to steering and reorientation of the molecules approaching the surface, activating the O-H bonds and inducing deprotonation. The developed methodology for studying metastable reaction intermediates prepared with a high-energy molecular beam in the STM can be readily extended to other systems to clarify a wide range of important bond activation processes.

3.
J Phys Chem Lett ; 7(15): 2967-70, 2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-27434420

RESUMO

Understanding the reactivity of H2 is of critical importance in controlling and optimizing many heterogeneous catalytic processes, particularly in cases where its adsorption on the catalyst surface is rate-limiting. In this work, we examine the temperature-dependent adsorption of H2/D2 on the clean RuO2(110) surface using the King and Wells molecular beam approach, temperature-programmed desorption (TPD), and scanning tunneling microscopy (STM). We show that the adsorption probability of H2/D2 on this surface is highly temperature-dependent, decreasing from ∼0.4 below 25 K to <0.01 at 300 K. Both STM and TPD reveal that adsorption (molecular or dissociative) is severely limited once the temperature exceeds the trailing edge temperature of the H2 TPD state (∼150 K). The presence of coadsorbed water or oxygen does not appear to alter this situation. Previous literature reports of extensive RuO2(110) surface hydroxylation from H2/D2 exposures at 300 K may instead be the result of background contamination brought about by chamber backfilling.

4.
J Am Chem Soc ; 138(28): 8714-7, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27390889

RESUMO

The coordination of H2 to a metal center via polarization of its σ bond electron density, known as a Kubas complex, is the means by which H2 chemisorbs at Ru(4+) sites on the rutile RuO2(110) surface. This distortion of electron density off an interatomic axis is often described as a 'banana-bond.' We show that the Ru-H2 banana-bond can be destabilized and split using visible light. Photodesorption of H2 (or D2) is evident by mass spectrometry and scanning tunneling microscopy. From time-dependent density functional theory, the key optical excitation splitting the Ru-H2 complex involves an interband transition in RuO2 which effectively diminishes its Lewis acidity, thereby weakening the Kubas complex. Such excitations are not expected to affect adsorbates on RuO2 given its metallic properties. Therefore, this common thermal cocatalyst employed in photocatalysis is, itself, photoactive.

5.
Sci Rep ; 5: 11378, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26074475

RESUMO

Growth of graphene by chemical vapor deposition on metal supports has become a promising approach for the large-scale synthesis of high quality graphene. Decoupling of the graphene from the metal has been achieved by either mechanical transfer or intercalation of elements/molecules in between the metal and graphene. Here we show that metal stabilized two-dimensional (2D)-oxide monolayers can be grown in between graphene and the metal substrate thus forming 2D-heterostructures that enable tuning of the materials properties of graphene. Specifically, we demonstrate the intercalation-growth of a 2D-FeO layer in between graphene and Pt(111), which can decouple the graphene from the metal substrate. It is known that the 2D-FeO/Pt(111) system exhibits a moiré-structure with locally strongly varying surface potential. This variation in the substrate surface potential modifies the interface charge doping to graphene locally, causing nanometer-scale variation in its work function and Fermi-level shifts relative to its Dirac point.

6.
ACS Appl Mater Interfaces ; 7(3): 2082-7, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25556522

RESUMO

Integrating graphene into nanoelectronic device structure requires interfacing graphene with high-κ dielectric materials. However, the dewetting and thermal instability of dielectric layers on top of graphene makes fabricating a pinhole-free, uniform, and conformal graphene/dielectric interface challenging. Here, we demonstrate that an ultrathin layer of high-κ dielectric material Y2O3 acts as an effective seeding layer for atomic layer deposition of Al2O3 on graphene. Whereas identical Al2O3 depositions lead to discontinuous film on bare graphene, the Y2O3 seeding layer yields uniform and conformal films. The morphology of the Al2O3 film is characterized by atomic force microscopy and transmission electron microscopy. C-1s X-ray photoemission spectroscopy indicates that the underlying graphene remains intact following Y2O3 seed and Al2O3 deposition. Finally, photoemission measurements of the graphene/SiO2/Si, Y2O3/graphene/SiO2, and Al2O3/Y2O3/graphene/SiO2 interfaces indicate n-type doping of graphene with different doping levels due to charge transfer at the interfaces.

7.
Nanoscale ; 6(5): 2548-62, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24477601

RESUMO

Graphene on nickel is a prototypical example of an interface between graphene and a strongly interacting metal, as well as a special case of a lattice matched system. The chemical interaction between graphene and nickel is due to hybridization of the metal d-electrons with the π-orbitals of graphene. This interaction causes a smaller separation between the nickel surface and graphene (0.21 nm) than the typical van der Waals gap-distance between graphitic layers (0.33 nm). Furthermore, the physical properties of graphene are significantly altered. Main differences are the opening of a band gap in the electronic structure and a shifting of the π-band by ∼2 eV below the Fermi-level. Experimental evidence suggests that the ferromagnetic nickel induces a magnetic moment in the carbon. Substrate induced geometric and electronic changes alter the phonon dispersion. As a consequence, monolayer graphene on nickel does not exhibit a Raman spectrum. In addition to reviewing these fundamental physical properties of graphene on Ni(111), we also discuss the formation and thermal stability of graphene and a surface-confined nickel-carbide. The fundamental growth mechanisms of graphene by chemical vapor deposition are also described. Different growth modes depending on the sample temperature have been identified in ultra high vacuum surface science studies. Finally, we give a brief summary for the synthesis of more complex graphene and graphitic structures using nickel as catalyst and point out some potential applications for graphene-nickel interfaces.


Assuntos
Grafite/química , Níquel/química , Magnetismo , Teoria Quântica , Propriedades de Superfície
8.
Nat Nanotechnol ; 8(1): 41-5, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23263724

RESUMO

Integrating graphene into device architectures requires interfacing graphene with dielectric materials. However, the dewetting and thermal instability of dielectric layers on top of graphene makes fabricating continuous graphene/dielectric interfaces challenging. Here, we show that yttria (Y(2)O(3))--a high-κ dielectric--can form a complete monolayer on platinum-supported graphene. The monolayer interacts weakly with graphene, but is stable to high temperatures. Scanning tunnelling microscopy reveals that the yttria layer exhibits a two-dimensional hexagonal lattice rotated by 30° relative to the hexagonal graphene lattice. X-ray photoemission spectroscopy measurements indicate a shift of the Fermi level in graphene on yttria deposition, which suggests that dielectric layers could be used for charge doping of metal-supported graphene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...