Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(24): e2316892121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38833472

RESUMO

The loss of function of AAA (ATPases associated with diverse cellular activities) mechanoenzymes has been linked to diseases, and small molecules that activate these proteins can be powerful tools to probe mechanisms and test therapeutic hypotheses. Unlike chemical inhibitors that can bind a single conformational state to block enzyme function, activator binding must be permissive to different conformational states needed for mechanochemistry. However, we do not know how AAA proteins can be activated by small molecules. Here, we focus on valosin-containing protein (VCP)/p97, an AAA unfoldase whose loss of function has been linked to protein aggregation-based disorders, to identify druggable sites for chemical activators. We identified VCP ATPase Activator 1 (VAA1), a compound that dose-dependently stimulates VCP ATPase activity up to ~threefold. Our cryo-EM studies resulted in structures (ranging from ~2.9 to 3.7 Å-resolution) of VCP in apo and ADP-bound states and revealed that VAA1 binds an allosteric pocket near the C-terminus in both states. Engineered mutations in the VAA1-binding site confer resistance to VAA1, and furthermore, modulate VCP activity. Mutation of a phenylalanine residue in the VCP C-terminal tail that can occupy the VAA1 binding site also stimulates ATPase activity, suggesting that VAA1 acts by mimicking this interaction. Together, our findings uncover a druggable allosteric site and a mechanism of enzyme regulation that can be tuned through small molecule mimicry.


Assuntos
Proteína com Valosina , Proteína com Valosina/metabolismo , Proteína com Valosina/química , Proteína com Valosina/genética , Regulação Alostérica , Humanos , Ligação Proteica , Mimetismo Molecular , Microscopia Crioeletrônica , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/química , Sítios de Ligação , Sítio Alostérico , Modelos Moleculares , Conformação Proteica
2.
Immunity ; 56(7): 1613-1630.e5, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37392735

RESUMO

Infiltration of regulatory T (Treg) cells, an immunosuppressive population of CD4+ T cells, into solid cancers represents a barrier to cancer immunotherapy. Chemokine receptors are critical for Treg cell recruitment and cell-cell interactions in inflamed tissues, including cancer, and thus are an ideal therapeutic target. Here, we show in multiple cancer models that CXCR3+ Treg cells were increased in tumors compared with lymphoid tissues, exhibited an activated phenotype, and interacted preferentially with CXCL9-producing BATF3+ dendritic cells (DCs). Genetic ablation of CXCR3 in Treg cells disrupted DC1-Treg cell interactions and concomitantly increased DC-CD8+ T cell interactions. Mechanistically, CXCR3 ablation in Treg cells increased tumor antigen-specific cross-presentation by DC1s, increasing CD8+ T cell priming and reactivation in tumors. This ultimately impaired tumor progression, especially in combination with anti-PD-1 checkpoint blockade immunotherapy. Overall, CXCR3 is shown to be a critical chemokine receptor for Treg cell accumulation and immune suppression in tumors.


Assuntos
Neoplasias , Linfócitos T Reguladores , Humanos , Neoplasias/metabolismo , Linfócitos T CD8-Positivos , Imunoterapia , Células Dendríticas/metabolismo , Receptores CXCR3/genética , Receptores CXCR3/metabolismo
3.
Sci Adv ; 8(2): eabk2141, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35020435

RESUMO

Crucial metabolic functions of peroxisomes rely on a variety of peroxisomal membrane proteins (PMPs). While mRNA transcripts of PMPs were shown to be colocalized with peroxisomes, the process by which PMPs efficiently couple translation with targeting to the peroxisomal membrane remained elusive. Here, we combine quantitative electron microscopy with proximity-specific ribosome profiling and reveal that translation of specific PMPs occurs on the surface of peroxisomes in the yeast Saccharomyces cerevisiae. This places peroxisomes alongside chloroplasts, mitochondria, and the endoplasmic reticulum as organelles that use localized translation for ensuring correct insertion of hydrophobic proteins into their membranes. Moreover, the correct targeting of these transcripts to peroxisomes is crucial for peroxisomal and cellular function, emphasizing the importance of localized translation for cellular physiology.

5.
J Cell Biol ; 219(10)2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32970792

RESUMO

A subset of peroxisomes is retained at the mother cell cortex by the Pex3-Inp1 complex. We identify Inp1 as the first known plasma membrane-peroxisome (PM-PER) tether by demonstrating that Inp1 meets the predefined criteria that a contact site tether protein must adhere to. We show that Inp1 is present in the correct subcellular location to interact with both the plasma membrane and peroxisomal membrane and has the structural and functional capacity to be a PM-PER tether. Additionally, expression of artificial PM-PER tethers is sufficient to restore retention in inp1Δ cells. We show that Inp1 mediates peroxisome retention via an N-terminal domain that binds PI(4,5)P2 and a C-terminal Pex3-binding domain, forming a bridge between the peroxisomal membrane and the plasma membrane. We provide the first molecular characterization of the PM-PER tether and show it anchors peroxisomes at the mother cell cortex, suggesting a new model for peroxisome retention.


Assuntos
Proteínas de Membrana/genética , Complexos Multiproteicos/genética , Peroxinas/genética , Peroxissomos/genética , Proteínas de Saccharomyces cerevisiae/genética , Sequência de Aminoácidos/genética , Membrana Celular/genética , Fosfatidilinositóis/genética , Ligação Proteica/genética , Saccharomyces cerevisiae/genética
6.
Genes (Basel) ; 9(9)2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158461

RESUMO

Peroxisomes are central to eukaryotic metabolism, including the oxidation of fatty acids-which subsequently provide an important source of metabolic energy-and in the biosynthesis of cholesterol and plasmalogens. However, the presence and nature of peroxisomes in the parasitic apicomplexan protozoa remains controversial. A survey of the available genomes revealed that genes encoding peroxisome biogenesis factors, so-called peroxins (Pex), are only present in a subset of these parasites, the coccidia. The basic principle of peroxisomal protein import is evolutionarily conserved, proteins harbouring a peroxisomal-targeting signal 1 (PTS1) interact in the cytosol with the shuttling receptor Pex5 and are then imported into the peroxisome via the membrane-bound protein complex formed by Pex13 and Pex14. Surprisingly, whilst Pex5 is clearly identifiable, Pex13 and, perhaps, Pex14 are apparently absent from the coccidian genomes. To investigate the functionality of the PTS1 import mechanism in these parasites, expression of Pex5 from the model coccidian Toxoplasma gondii was shown to rescue the import defect of Pex5-deleted Saccharomyces cerevisiae. In support of these data, green fluorescent protein (GFP) bearing the enhanced (e)PTS1 known to efficiently localise to peroxisomes in yeast, localised to peroxisome-like bodies when expressed in Toxoplasma. Furthermore, the PTS1-binding domain of Pex5 and a PTS1 ligand from the putatively peroxisome-localised Toxoplasma sterol carrier protein (SCP2) were shown to interact in vitro. Taken together, these data demonstrate that the Pex5⁻PTS1 interaction is functional in the coccidia and indicate that a nonconventional peroxisomal import mechanism may operate in the absence of Pex13 and Pex14.

7.
Sci Rep ; 8(1): 11249, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30050042

RESUMO

The nuclear pore complex (NPC) is a large macromolecular assembly of around 30 different proteins, so-called nucleoporins (Nups). Embedded in the nuclear envelope the NPC mediates bi-directional exchange between the cytoplasm and the nucleus and plays a role in transcriptional regulation that is poorly understood. NPCs display modular arrangements with an overall structure that is generally conserved among many eukaryotic phyla. However, Nups of yeast or human origin show little primary sequence conservation with those from early-branching protozoans leaving those of the malaria parasite unrecognized. Here we have combined bioinformatic and genetic methods to identify and spatially characterize Nup components in the rodent infecting parasite Plasmodium berghei and identified orthologs from the human malaria parasite P. falciparum, as well as the related apicomplexan parasite Toxoplasma gondii. For the first time we show the localization of selected Nups throughout the P. berghei life cycle. Largely restricted to apicomplexans we identify an extended C-terminal poly-proline extension in SEC13 that is essential for parasite survival and provide high-resolution images of Plasmodium NPCs obtained by cryo electron tomography. Our data provide the basis for full characterization of NPCs in malaria parasites, early branching unicellular eukaryotes with significant impact on human health.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares/análise , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Plasmodium berghei/enzimologia , Biologia Computacional , Genes Essenciais , Biologia Molecular , Plasmodium berghei/genética , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Toxoplasma/enzimologia , Toxoplasma/genética
8.
Methods Mol Biol ; 1595: 305-318, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28409473

RESUMO

High-throughput methodologies have been extensively used in the budding yeast, Saccharomyces cerevisiae, to uncover fundamental principles of cell biology. Over the years, several collections of yeast strains (libraries) were built to enable systematic exploration of cellular functions. However, using these libraries experimentally is often labor intensive and restricted to laboratories that hold high throughput platforms. Utilizing the available full genome libraries we handpicked a subset of strains that represent all known and predicted peroxisomal proteins as well as proteins that have central roles in peroxisome biology. These smaller collections of strains, mini-libraries, can be rapidly and easily used for complicated screens by any lab. Since one of the libraries is built such that it can be easily modified in the tag, promoter and selection, we also discuss how these collections form the basis for creating a diversity of new peroxisomal libraries for future studies. Using manual tools, available in any yeast lab, coupled with few simple genetic approaches, we will show how these libraries can be "mixed and matched" to create tailor made libraries for screening. These yeast collections may now be exploited to study uncharted territories in the biology of peroxisomes by anyone, anywhere.


Assuntos
Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Biologia de Sistemas , Biblioteca Gênica , Testes Genéticos , Ensaios de Triagem em Larga Escala , Proteínas de Membrana/genética , Proteômica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Biologia de Sistemas/métodos
9.
Adv Healthc Mater ; 6(6)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28117558

RESUMO

Plasmodium sporozoites, the highly motile forms of the malaria parasite, are transmitted naturally by mosquitoes and traverse the skin to find, associate with, and enter blood capillaries. Research aimed at understanding how sporozoites select blood vessels is hampered by the lack of a suitable experimental system. Arrays of uniform cylindrical pillars can be used to study small cells moving in controlled environments. Here, an array system displaying a variety of pillars with different diameters and shapes is developed in order to investigate how Plasmodium sporozoites associate to the pillars as blood vessel surrogates. Investigating the association of sporozoites to pillars in arrays displaying pillars of different diameters reveals that the crescent-shaped parasites prefer to associate with and migrate around pillars with a similar curvature. This suggests that after transmission by a mosquito, malaria parasites may use a structural tropism to recognize blood capillaries in the dermis in order to gain access to the blood stream.


Assuntos
Culicidae/parasitologia , Microvasos/parasitologia , Plasmodium berghei/metabolismo , Esporozoítos/metabolismo , Animais , Humanos , Microvasos/fisiopatologia , Plasmodium berghei/citologia , Esporozoítos/citologia
10.
J Cell Sci ; 129(21): 4067-4075, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27663510

RESUMO

To optimally perform the diversity of metabolic functions that occur within peroxisomes, cells must dynamically regulate peroxisome size, number and content in response to the cell state and the environment. Except for transcriptional regulation little is known about the mechanisms used to perform this complicated feat. Focusing on the yeast Saccharomyces cerevisiae, we used complementary high-content screens to follow changes in localization of most proteins during growth in oleate. We found extensive changes in cellular architecture and identified several proteins that colocalized with peroxisomes that had not previously been considered peroxisomal proteins. One of the newly identified peroxisomal proteins, Ymr018w, is a protein with an unknown function that is similar to the yeast and human peroxisomal targeting receptor Pex5. We demonstrate that Ymr018w is a new peroxisomal-targeting receptor that targets a subset of matrix proteins to peroxisomes. We, therefore, renamed Ymr018w, Pex9, and suggest that Pex9 is a condition-specific targeting receptor that enables the dynamic rewiring of peroxisomes in response to metabolic needs. Moreover, we suggest that Pex5-like receptors might also exist in vertebrates.


Assuntos
Ácido Oleico/farmacologia , Peroxissomos/metabolismo , Proteoma/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Modelos Biológicos , Transporte Proteico/efeitos dos fármacos , Proteômica , Saccharomyces cerevisiae/efeitos dos fármacos
11.
Microbes Infect ; 9(2): 192-9, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17224290

RESUMO

In refractory mosquitoes, melanotic encapsulation of Plasmodium ookinetes and oocysts is a commonly observed immune response. However, in susceptible mosquitoes, Plasmodium oocysts develop extracellularly in the body cavity without being recognized by the immune system. Like Plasmodium gallinaceum oocysts, negatively charged carboxymethyl (CM)-Sephadex beads implanted in the hemocoel of Aedes aegypti female mosquitoes were not usually melanized, but were coated with mosquito-derived laminin. Conversely, electrically neutral G-Sephadex beads were routinely melanized. Since mosquito laminin coated both CM-Sephadex beads and P. gallinaceum oocysts, we hypothesized that laminin prevents melanization of both. To test this hypothesis, we coated cyanogen-bromide-activated G-Sephadex beads with laminin, recombinant P. gallinaceum ookinete surface protein (PgS28) or bovine serum albumin (BSA). Beads were implanted into the abdominal body cavity of female Aedes aegypti and retrieved 4 days later. Uncoated controls as well as BSA-coated G-Sephadex beads were melanized in a normal manner. However, melanization of beads coated with mouse laminin, Drosophila L2-secreted proteins or PgS28 was markedly reduced. Fluorescent antibody labeling showed that PgS28-coated beads had adsorbed mosquito laminin on their surface. Thus, mosquito laminin interacting with Plasmodium surface proteins probably masks oocysts from the mosquito's immune system, thereby facilitating their development in the body cavity.


Assuntos
Aedes/imunologia , Antígenos de Protozoários/metabolismo , Hemolinfa/imunologia , Laminina/metabolismo , Melaninas/metabolismo , Plasmodium gallinaceum/imunologia , Proteínas de Protozoários/metabolismo , Aedes/parasitologia , Animais , Western Blotting , Linhagem Celular , Galinhas , Dextranos , Drosophila , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Microscopia Eletrônica de Transmissão , Microesferas , Oocistos/imunologia , Oocistos/fisiologia , Plasmodium gallinaceum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...