Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioanalysis ; 13(7): 537-549, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33729007

RESUMO

Immunogenicity assays are required to evaluate anti-drug antibody (ADA) responses that can be generated against biotherapeutic modalities. Regulatory guidelines focus on clinical requirements, yet it has become apparent that industry has applied these clinical recommendations for immunogenicity assessment to nonclinical studies in varying degrees. ADAs are an anticipated outcome of dosing a humanized or fully human biotherapeutic into an animal. However, a nonclinical ADA response is rarely predictive of the immunogenic potential in humans. The addendum to ICH S6 recommends that immunogenicity should be explicitly examined where there is: evidence of altered pharmacodynamic activity; unexpected changes in exposure in the absence of a pharmacodynamic marker or evidence of immuno-mediated reactions. The European Bioanalytical Forum has extensively discussed and reached a consensus on a minimal strategic approach of when and what to include for nonclinical immunogenicity assessments. Additionally, this paper recommends a strategy for ADA assay validation and sample analysis for those cases when it is considered necessary to include an immunogenicity assessment in nonclinical toxicology studies.


Assuntos
Anticorpos/análise , Bioensaio , Anticorpos/imunologia , Formação de Anticorpos , Europa (Continente) , Humanos
2.
Bioanalysis ; 13(6): 415-463, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33533276

RESUMO

The 14th edition of the Workshop on Recent Issues in Bioanalysis (14th WRIB) was held virtually on June 15-29, 2020 with an attendance of over 1000 representatives from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations, and regulatory agencies worldwide. The 14th WRIB included three Main Workshops, seven Specialized Workshops that together spanned 11 days in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy and vaccine. Moreover, a comprehensive vaccine assays track; an enhanced cytometry track and updated Industry/Regulators consensus on BMV of biotherapeutics by LCMS were special features in 2020. As in previous years, this year's WRIB continued to gather a wide diversity of international industry opinion leaders and regulatory authority experts working on both small and large molecules to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance and achieving scientific excellence on bioanalytical issues. This 2020 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the Global Bioanalytical Community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2020 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 3) covers the recommendations on Vaccine, Gene/Cell Therapy, NAb Harmonization and Immunogenicity). Part 1 (Innovation in Small Molecules, Hybrid LBA/LCMS & Regulated Bioanalysis), Part 2A (BAV, PK LBA, Flow Cytometry Validation and Cytometry Innovation) and Part 2B (Regulatory Input) are published in volume 13 of Bioanalysis, issues 4 and 5 (2020), respectively.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Citometria de Fluxo , Terapia Genética , Reação em Cadeia da Polimerase em Tempo Real , Vacinas/análise , Humanos , Controle de Qualidade , Receptores de Antígenos Quiméricos/análise , Estados Unidos , United States Food and Drug Administration
3.
J Immunol Methods ; 497: 113002, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33640327

RESUMO

Highly sensitive assays for anti-drug antibodies (ADAs) are both a regulatory requirement and requisite for proper evaluation of the effects of immunogenicity on clinical efficacy and safety. Determination of ADA assay sensitivity depends on positive control antibodies to represent naturally occurring or treatment-induced ADA responses. An accurate determination of the proportion of drug-specific antibodies in these polyclonal positive control batches is critical for correct evaluation of assay sensitivity. Target purification of positive control antibodies is commonly applied but infers the risk to lose a proportion of the antibodies. This may lead to an incorrect estimate of the ADA assay sensitivity, especially if high-affinity antibodies are lost that may be representative of natural ADAs with clinical implication. The Surface Plasmon Resonance platform on the Biacore™ systems offers methods for real-time analysis of biomolecular interactions without introducing any modifications to the analysed material. Calibration-free concentration analysis (CFCA) is such an application for determination of the proportion of drug-specific antibodies, which allows direct determination of active antibody concentrations, as defined by the ligand, in a flow-based system. Here, we present a novel CFCA method for ADA quantification developed and validated using polyclonal positive control antibodies against endogenous human insulin, insulin degludec (Tresiba®) and turoctocog alfa (NovoEight®). We find that CFCA precisely and accurately measures concentrations of drug-specific IgG antibodies with a precision of ±10% and 90%-112% recovery of expected values of monoclonal positive control antibodies. Additionally, we have achieved a more accurate measure of the sensitivity of a cell-based bioassay for in vitro neutralising ADAs using the specific concentration determined with CFCA. Moreover, we effectively quantified serum anti-insulin antibodies in high-titre clinical samples from individuals with diabetes mellitus. This application extends the relevance of the CFCA technology to analysis of immunogenicity for accurate quantification of ADAs in both the polyclonal positive control and in clinical samples.


Assuntos
Anticorpos Neutralizantes/sangue , Coagulantes/imunologia , Diabetes Mellitus/imunologia , Fator VIII/imunologia , Hipoglicemiantes/imunologia , Imunoglobulina G/sangue , Técnicas Imunológicas , Insulina de Ação Prolongada/imunologia , Ressonância de Plasmônio de Superfície , Autoanticorpos/sangue , Biomarcadores/sangue , Diabetes Mellitus/sangue , Diabetes Mellitus/tratamento farmacológico , Humanos , Hipoglicemiantes/uso terapêutico , Insulina de Ação Prolongada/uso terapêutico , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
4.
Cancer Cell ; 28(4): 500-514, 2015 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-26461094

RESUMO

Plasmodium falciparum engineer infected erythrocytes to present the malarial protein, VAR2CSA, which binds a distinct type chondroitin sulfate (CS) exclusively expressed in the placenta. Here, we show that the same CS modification is present on a high proportion of malignant cells and that it can be specifically targeted by recombinant VAR2CSA (rVAR2). In tumors, placental-like CS chains are linked to a limited repertoire of cancer-associated proteoglycans including CD44 and CSPG4. The rVAR2 protein localizes to tumors in vivo and rVAR2 fused to diphtheria toxin or conjugated to hemiasterlin compounds strongly inhibits in vivo tumor cell growth and metastasis. Our data demonstrate how an evolutionarily refined parasite-derived protein can be exploited to target a common, but complex, malignancy-associated glycosaminoglycan modification.


Assuntos
Antígenos de Protozoários/genética , Sulfatos de Condroitina/metabolismo , Melanoma Experimental/terapia , Placenta/metabolismo , Proteínas Recombinantes/administração & dosagem , Neoplasias Cutâneas/terapia , Animais , Antígenos de Protozoários/metabolismo , Linhagem Celular Tumoral , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Feminino , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Receptores de Hialuronatos/metabolismo , Melanoma Experimental/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Terapia de Alvo Molecular , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Especificidade de Órgãos , Gravidez , Proteínas Recombinantes/farmacologia , Neoplasias Cutâneas/metabolismo
5.
PLoS One ; 7(9): e43663, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22970138

RESUMO

Malaria during pregnancy in Plasmodium falciparum endemic regions is a major cause of mortality and severe morbidity. VAR2CSA is the parasite ligand responsible for sequestration of Plasmodium falciparum infected erythrocytes to the receptor chondroitin sulfate A (CSA) in the placenta and is the leading candidate for a placental malaria vaccine. Antibodies induced in rats against the recombinant DBL4ε domain of VAR2CSA inhibit the binding of a number of laboratory and field parasite isolates to CSA. In this study, we used a DBL4ε peptide-array to identify epitopes targeted by DBL4ε-specific antibodies that inhibit CSA-binding of infected erythrocytes. We identified three regions of overlapping peptides which were highly antigenic. One peptide region distinguished itself particularly by showing a clear difference in the binding profile of highly parasite blocking IgG compared to the IgG with low capacity to inhibit parasite adhesion to CSA. This region was further characterized and together these results suggest that even though antibodies against the synthetic peptides which cover this region did not recognize native protein, the results using the mutant domain suggest that this linear epitope might be involved in the induction of inhibitory antibodies induced by the recombinant DBL4ε domain.


Assuntos
Antígenos de Protozoários/química , Epitopos de Linfócito B/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Antiprotozoários/química , Anticorpos Antiprotozoários/imunologia , Formação de Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Antígenos de Protozoários/imunologia , Adesão Celular , Mapeamento de Epitopos , Epitopos de Linfócito B/química , Eritrócitos/parasitologia , Feminino , Humanos , Soros Imunes/imunologia , Modelos Lineares , Modelos Moleculares , Dados de Sequência Molecular , Análise Multivariada , Proteínas Mutantes/química , Proteínas Mutantes/imunologia , Parasitos/imunologia , Peptídeos/química , Peptídeos/imunologia , Plasmodium falciparum/citologia , Plasmodium falciparum/imunologia , Gravidez , Estrutura Terciária de Proteína , Ratos , Alinhamento de Sequência
6.
J Biol Chem ; 287(28): 23332-45, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22570492

RESUMO

Malaria is a major global health problem. Pregnant women are susceptible to infection regardless of previously acquired immunity. Placental malaria is caused by parasites capable of sequestering in the placenta. This is mediated by VAR2CSA, a parasite antigen that interacts with chondroitin sulfate A (CSA). One vaccine strategy is to block this interaction with VAR2CSA-specific antibodies. It is a priority to define a small VAR2CSA fragment that can be used in an adhesion blocking vaccine. In this, the obvious approach is to define regions of VAR2CSA involved in receptor binding. It has been shown that full-length recombinant VAR2CSA binds specifically to CSA with nanomolar affinity, and that the CSA-binding site lies in the N-terminal part of the protein. In this study we define the minimal binding region by truncating VAR2CSA and analyzing CSA binding using biosensor technology. We show that the core CSA-binding site lies within the DBL2X domain and parts of the flanking interdomain regions. This is in contrast to the idea that single domains do not possess the structural requirements for specific CSA binding. Small-angle x-ray scattering measurements enabled modeling of VAR2CSA and showed that the CSA-binding DBL2X domain is situated in the center of the structure. Mutating classic sulfate-binding sites in VAR2CSA, along with testing dependence of ionic interactions, suggest that the CSA binding is not solely dependent on the sulfated CSA structure. Based on these novel PfEMP1 structure-function studies, we have constructed a small VAR2CSA antigen that has the capacity to induce highly adhesion-blocking antibodies.


Assuntos
Antígenos de Protozoários/imunologia , Sulfatos de Condroitina/imunologia , Malária Falciparum/imunologia , Placenta/imunologia , Plasmodium falciparum/imunologia , Animais , Antígenos de Protozoários/genética , Antígenos de Protozoários/metabolismo , Sítios de Ligação/genética , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Feminino , Interações Hospedeiro-Parasita , Humanos , Soros Imunes/imunologia , Soros Imunes/metabolismo , Imunização , Cinética , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Modelos Moleculares , Mutação , Placenta/metabolismo , Placenta/parasitologia , Plasmodium falciparum/fisiologia , Gravidez , Complicações Parasitárias na Gravidez , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Ratos , Ratos Wistar , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X
7.
PLoS One ; 6(3): e17942, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21464946

RESUMO

BACKGROUND: In Plasmodium falciparum malaria endemic areas placental malaria (PM) is an important complication of malaria. The recurrence of malaria in primigravidae women irrespective of acquired protection during childhood is caused by the interaction between the parasite-expressed VAR2CSA antigen and chondroitin sulfate A (CSA) in the placental intervillous space and lack of protective antibodies. PM impairs fetal development mainly by excessive inflammation processes. After infections during pregnancy women acquire immunity to PM conferred by antibodies against VAR2CSA. Ideally, a vaccine against PM will induce antibody-mediated immune responses that block the adhesion of infected erythrocytes (IE) in the placenta. PRINCIPAL FINDINGS: We have previously shown that antibodies raised in rat against individual domains of VAR2CSA can block IE binding to CSA. In this study we have immunized mice, rats and rabbits with each individual domain and the full-length protein corresponding to the FCR3 VAR2CSA variant. We found there is an inherently higher immunogenicity of C-terminal domains compared to N-terminally located domains. This was irrespective of whether antibodies were induced against single domains or the full-length protein. Species-specific antibody responses were also found, these were mainly directed against single domains and not the full-length VAR2CSA protein. CONCLUSIONS/SIGNIFICANCE: Binding inhibitory antibodies appeared to be against conformational B-cell epitopes. Non-binding inhibitory antibodies reacted highly against the C-terminal end of the VAR2CSA molecule especially the highly polymorphic DBL6ε domain. Differential species-specific induction of antibody responses may allow for more direct analysis of functional versus non-functional B-cell epitopes.


Assuntos
Antígenos de Protozoários/imunologia , Imunoglobulina G/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Placenta/imunologia , Placenta/parasitologia , Plasmodium falciparum/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Formação de Anticorpos/imunologia , Antígenos de Protozoários/química , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Eritrócitos/parasitologia , Feminino , Humanos , Malária Falciparum/parasitologia , Camundongos , Gravidez , Análise Serial de Proteínas , Estrutura Terciária de Proteína , Coelhos , Ratos , Proteínas Recombinantes/imunologia , Especificidade da Espécie
8.
J Biol Chem ; 286(18): 15908-17, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21398524

RESUMO

Malaria during pregnancy is a major health problem for African women. The disease is caused by Plasmodium falciparum malaria parasites, which accumulate in the placenta by adhering to chondroitin sulfate A (CSA). The interaction between infected erythrocytes and the placental receptor is mediated by a parasite expressed protein named VAR2CSA. A vaccine protecting pregnant women against placental malaria should induce antibodies inhibiting the interaction between VAR2CSA and CSA. Much effort has been put into defining the part of the 350 kDa VAR2CSA protein that is responsible for binding. It has been shown that full-length recombinant VAR2CSA binds specifically to CSA with high affinity, however to date no sub-fragment of VAR2CSA has been shown to interact with CSA with similar affinity or specificity. In this study, we used a biosensor technology to examine the binding properties of a panel of truncated VAR2CSA proteins. The experiments indicate that the core of the CSA-binding site is situated in three domains, DBL2X-CIDR(PAM) and a flanking domain, located in the N-terminal part of VAR2CSA. Furthermore, recombinant VAR2CSA subfragments containing this region elicit antibodies with high parasite adhesion blocking activity in animal immunization experiments.


Assuntos
Sulfatos de Condroitina/química , Mapeamento de Peptídeos , Plasmodium falciparum/química , Animais , Antígenos de Protozoários , Técnicas Biossensoriais/métodos , Sulfatos de Condroitina/genética , Sulfatos de Condroitina/imunologia , Sulfatos de Condroitina/metabolismo , Eritrócitos/imunologia , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Feminino , Humanos , Vacinas Antimaláricas/química , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/metabolismo , Malária Falciparum/epidemiologia , Malária Falciparum/genética , Malária Falciparum/imunologia , Malária Falciparum/metabolismo , Malária Falciparum/prevenção & controle , Placenta/imunologia , Placenta/metabolismo , Placenta/parasitologia , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Plasmodium falciparum/metabolismo , Gravidez , Complicações Parasitárias na Gravidez/epidemiologia , Complicações Parasitárias na Gravidez/genética , Complicações Parasitárias na Gravidez/imunologia , Complicações Parasitárias na Gravidez/metabolismo , Complicações Parasitárias na Gravidez/prevenção & controle , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Ratos Wistar , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo
9.
Vaccine ; 29(3): 437-43, 2011 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-21075162

RESUMO

Malaria during pregnancy is a major cause of intra-uterine growth-retardation and infant death in sub-Saharan Africa. Ideally, this could be prevented by a vaccine delivered before the first pregnancy. Antibodies against domain DBL4ɛ from VAR2CSA has been shown to inhibit adhesion of laboratory isolates to the placental receptor chondroitin sulfate A. In this study, the binding inhibitory efficacy of IgG elicited by two different DBL4ɛ recombinant proteins was tested on a panel of fresh clinical isolates from pregnant women living in Benin and Tanzania. The most promising recombinant protein elicited antibodies with similar efficacy as pooled plasma from immune multi-gravid African women.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Adesão Celular , Enzimas Reparadoras do DNA/metabolismo , Eritrócitos/parasitologia , Malária Falciparum/imunologia , Complicações Infecciosas na Gravidez/imunologia , Fatores de Transcrição/metabolismo , Benin , Feminino , Humanos , Imunoglobulina G/imunologia , Vacinas Antimaláricas/imunologia , Plasmodium falciparum/imunologia , Gravidez , Proteínas Recombinantes/imunologia , Tanzânia
10.
J Immunol ; 185(12): 7553-61, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21078904

RESUMO

Acquired protection from Plasmodium falciparum placental malaria, a major cause of maternal, fetal, and infant morbidity, is mediated by IgG specific for the P. falciparum erythrocyte membrane protein 1 variant VAR2CSA. This protein enables adhesion of P. falciparum-infected erythrocytes to chondroitin sulfate A in the intervillous space. Although interclonal variation of the var2csa gene is lower than that among var genes in general, VAR2CSA-specific Abs appear to target mainly polymorphic epitopes. This has raised doubts about the feasibility of VAR2CSA-based vaccines. We used eight human monoclonal IgG Abs from affinity-matured memory B cells of P. falciparum-exposed women to study interclonal variation and functional importance of Ab epitopes among placental and peripheral parasites from East and West Africa. Most placental P. falciparum isolates were labeled by several mAbs, whereas peripheral isolates from children were essentially nonreactive. The mAb reactivity of peripheral isolates from pregnant women indicated that some were placental, whereas others had alternative sequestration foci. Most of the mAbs were comparable in their reactivity with bound infected erythrocytes (IEs) and recombinant VAR2CSA and interfered with IE and/or VAR2CSA binding to chondroitin sulfate A. Pair-wise mAb combinations were more inhibitory than single mAbs, and all of the mAbs together was the most efficient combination. Each mAb could opsonize IEs for phagocytosis, and a combination of the eight mAbs caused phagocytosis similar to that of plasma IgG-opsonized IEs. We conclude that functionally important Ab epitopes are shared by the majority of polymorphic VAR2CSA variants, which supports the feasibility of VAR2CSA-based vaccines against placental malaria.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antiprotozoários/imunologia , Sulfatos de Condroitina/imunologia , Epitopos/imunologia , Eritrócitos/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Adulto , Linfócitos B/imunologia , Criança , Pré-Escolar , Epitopos/genética , Eritrócitos/parasitologia , Feminino , Humanos , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/farmacologia , Malária Falciparum/genética , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Masculino , Placenta/imunologia , Placenta/parasitologia , Plasmodium falciparum/genética , Gravidez , Complicações Infecciosas na Gravidez/genética , Complicações Infecciosas na Gravidez/imunologia , Complicações Infecciosas na Gravidez/parasitologia , Complicações Infecciosas na Gravidez/prevenção & controle , Proteínas de Protozoários/genética
11.
Trends Parasitol ; 26(5): 230-5, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20189879

RESUMO

Pregnancy-associated malaria (PAM) is caused by Plasmodium falciparum-infected erythrocytes (IEs) accumulating in the placenta and has dire consequences for both mother and child. The multi-domain antigen VAR2CSA confers specific adhesion of IEs to chondroitin sulphate A (CSA) in the placenta, and is the leading PAM vaccine candidate. Recent data from different laboratories show that the binding properties of individual VAR2CSA domains do not reflect the native CSA-specific adhesion of IEs, which questions the relevance of the information obtained from single domain binding assays and co-crystallization experiments. Here, we discuss the implications of these findings for VAR2CSA vaccine development and highlight the need for studying the native structure of this protein.


Assuntos
Vacinas Antimaláricas , Polissacarídeos/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Antígenos de Protozoários/química , Antígenos de Protozoários/metabolismo , Sítios de Ligação , Sulfatos de Condroitina/metabolismo , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Feminino , Humanos , Plasmodium falciparum/fisiologia , Gravidez , Complicações Parasitárias na Gravidez/prevenção & controle , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Protozoários/química
12.
J Mol Biol ; 397(3): 826-34, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20109466

RESUMO

Plasmodium falciparum malaria remains one of the world's leading causes of human suffering and poverty. Each year, the disease takes 1-3 million lives, mainly in sub-Saharan Africa. The adhesion of infected erythrocytes (IEs) to vascular endothelium or placenta is the key event in the pathogenesis of severe P. falciparum infection. In pregnant women, the parasites express a single and unique member of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family named VAR2CSA, which is associated with the ability of the IEs to adhere specifically to chondroitin sulphate A (CSA) in the placenta. Several Duffy-binding-like domains from VAR2CSA molecules have been shown in vitro to bind to CSA, but it has also been demonstrated that Duffy-binding-like domains from PfEMP1 proteins other than VAR2CSA can bind CSA. In addition, the specificity of the binding of VAR2CSA domains to glycosaminoglycans does not match that of VAR2CSA-expressing IEs. This has led to speculation that the domains of native VAR2CSA need to come together to form a specific binding site or that VAR2CSA might bind to CSA through a bridging molecule. Here, we describe the expression and purification of the complete extracellular region of VAR2CSA secreted at high yields from insect cells. Using surface plasmon resonance, we demonstrate that VAR2CSA alone binds with nanomolar affinity to human chondroitin sulphate proteoglycan and with significantly weaker affinity to other glycosaminoglycans, showing a specificity similar to that observed for IEs. Antibodies raised against full-length VAR2CSA completely inhibit recombinant VAR2CSA binding, as well as parasite binding to chondroitin sulphate proteoglycan. This is the first study to describe the successful production and functionality of a full-length PfEMP1. The specificity of the binding and anti-adhesion potency of induced IgG, together with high-yield production, encourages the use of full-length PfEMP1 in vaccine development strategies.


Assuntos
Anticorpos Antiprotozoários/imunologia , Anticorpos Antiprotozoários/metabolismo , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/metabolismo , Sulfatos de Condroitina/metabolismo , Eritrócitos/metabolismo , Animais , Antígenos de Protozoários/genética , Clonagem Molecular , Ensaio de Imunoadsorção Enzimática , Eritrócitos/parasitologia , Citometria de Fluxo , Glicosaminoglicanos/metabolismo , Malária Falciparum/genética , Malária Falciparum/imunologia , Malária Falciparum/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Ressonância de Plasmônio de Superfície
13.
Malar J ; 9: 11, 2010 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-20064234

RESUMO

BACKGROUND: Malaria caused by Plasmodium falciparum can result in several different syndromes with severe clinical consequences for the about 200 million individuals infected each year. During pregnancy, women living in endemic areas become susceptible to malaria due to lack of antibodies against a unique P. falciparum membrane protein, named VAR2CSA. This antigen is not expressed in childhood infections, since it binds chondroitin sulphate A (CSA) expressed on the intervillous space in the placenta. A vaccine appears possible because women acquire protective antibodies hindering sequestration in the placenta as a function of parity. A challenge for vaccine development is to design small constructs of this large antigen, which can induce broadly protective antibodies. It has previously been shown that one domain of VAR2CSA, DBL4-FCR3, induces parasite adhesion-blocking antibodies. In this study, it is demonstrated that other domains of VAR2CSA also can induce antibodies with inhibitory activity. METHODS: All VAR2CSA domains from the 3D7 and HB3 parasites were produced in Baculovirus-transfected insect cells. Groups of three rats per protein were immunized and anti-sera were tested for surface reactivity against infected erythrocytes expressing FCR3 VAR2CSA and for the ability to inhibit FCR3CSA parasite adhesion to CSA. The fine specificity of the immune sera was analysed by VAR2CSA peptide arrays. RESULTS: Inhibitory antibodies were induced by immunization with DBL3-HB3 T1 and DBL1-3D7. However, unlike the previously characterised DBL4-FCR3 response the inhibitory response against DBL1-3D7 and DBL3-HB3 T1 was poorly reproduced in the second rounds of immunizations. CONCLUSION: It is possible to induce parasite adhesion-blocking antibodies when immunizing with a number of different VAR2CSA domains. This indicates that the CSA binding site in VAR2CSA is comprised of epitopes from different domains.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Adesão Celular/imunologia , Vacinas Antimaláricas/imunologia , Animais , Antígenos de Protozoários/genética , Baculoviridae/genética , Feminino , Vetores Genéticos , Humanos , Insetos , Vacinas Antimaláricas/genética , Gravidez , Estrutura Terciária de Proteína , Ratos , Ratos Wistar , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
14.
Infect Immun ; 77(6): 2482-7, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19307213

RESUMO

In areas of endemicity pregnancy-associated malaria is an important cause of maternal anemia, stillbirth, and delivery of low-birth-weight children. The syndrome is precipitated by the accumulation of Plasmodium falciparum-infected erythrocytes in the placenta, mediated through an interaction between a parasite protein expressed on erythrocytes named variant surface antigen 2-chondroitin sulfate A (VAR2CSA) and CSA on syncytiotrophoblasts. VAR2CSA is a large polymorphic protein consisting of six Duffy binding-like (DBL), domains and with current constraints on recombinant protein production it is not possible to produce entire VAR2CSA recombinant proteins. Furthermore, the presence of polymorphisms has raised the question of whether it is feasible to define VAR2CSA antigens eliciting broadly protective antibodies. Thus, the challenge for vaccine development is to define smaller parts of the molecule which induce antibodies that inhibit CSA binding of different parasite strains. In this study, we produced a large panel of VAR2CSA proteins and raised antibodies against these antigens. We show that antibodies against the DBL4 domain effectively inhibit parasite binding. As the inhibition was not limited to homologous parasite strains, it seems feasible to base a protective malaria vaccine on a single VAR2CSA DBL domain.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Adesão Celular/imunologia , Plasmodium falciparum/imunologia , Trofoblastos/parasitologia , Animais , Antígenos de Protozoários/genética , Humanos , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/imunologia , Plasmodium falciparum/fisiologia , Ratos , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia
15.
Int J Parasitol ; 39(11): 1195-204, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19324047

RESUMO

Individuals living in areas with high Plasmodium falciparum transmission acquire immunity to malaria over time and adults have a markedly reduced risk of contracting severe disease. However, pregnant women constitute an important exception. Pregnancy-associated malaria is a major cause of mother and offspring morbidity, such as severe maternal anaemia and low birth-weight, and is characterised by selective accumulation of parasite-infected erythrocytes (IE) in the placenta. A P. falciparum protein named VAR2CSA, which belongs to the large P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1) family, enables the IE to bind chondroitin sulphate A (CSA) in the placenta. Knock-out studies have demonstrated the exclusive capacity of VAR2CSA to mediate IE binding to CSA, and it has been shown that four of the six Duffy-binding-like (DBL) domains of VAR2CSA have the ability to bind CSA in vitro. In this study, we confirm the CSA-binding of these DBL domains, however, the analysis of a number of DBL domains of a non-VAR2CSA origin shows that CSA-binding is not exclusively restricted to VAR2CSA DBL domains. Furthermore, we show that the VAR2CSA DBL domains as well as other DBL domains also bind heparan sulphate. These data explain a number of publications describing CSA-binding domains derived from PfEMP1 antigens not involved in placental adhesion. The data suggest that the ability of single domains to bind CSA does not predict the functional capacity of the whole PfEMP1 and raises doubt whether the CSA-binding domains of native VAR2CSA have been correctly identified.


Assuntos
Antígenos de Protozoários/metabolismo , Sulfatos de Condroitina/metabolismo , Glicosaminoglicanos/metabolismo , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo , Receptores de Superfície Celular/metabolismo , Adulto , Animais , Antígenos de Protozoários/genética , Sítios de Ligação , Ensaio de Imunoadsorção Enzimática , Eritrócitos/parasitologia , Feminino , Heparitina Sulfato/metabolismo , Humanos , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Fenótipo , Placenta/metabolismo , Placenta/parasitologia , Gravidez , Complicações Parasitárias na Gravidez/imunologia , Complicações Parasitárias na Gravidez/parasitologia , Ligação Proteica , Proteínas de Protozoários/genética , Receptores de Superfície Celular/genética , Proteínas Recombinantes/metabolismo
16.
J Infect Dis ; 198(7): 1071-4, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18700835

RESUMO

Malaria remains a major threat, in sub-Saharan Africa primarily, and the most deadly infections are those with Plasmodium falciparum. Pregnancy-associated malaria is a clinically important complication of infection; it results from a unique interaction between proteoglycans in the placental intervillous space and parasite antigens. Both placental and chondroitin sulphate A-selected parasites have high-level transcripts of a unique var gene named var2csa. However, VAR2CSA has not been consistently found by proteomic analysis of placental parasites. Contrary to this, we found VAR2CSA expressed on the surface of infected erythrocytes from placenta. Importantly, this was achieved with cross-reactive antibodies against VAR2CSA.


Assuntos
Antígenos de Protozoários/sangue , Eritrócitos/química , Eritrócitos/parasitologia , Placenta/parasitologia , Animais , Feminino , Humanos , Gravidez
17.
Malar J ; 7: 104, 2008 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-18534039

RESUMO

BACKGROUND: Pregnancy malaria is caused by Plasmodium falciparum-infected erythrocytes binding the placental receptor chondroitin sulfate A (CSA). This results in accumulation of parasites in the placenta with severe clinical consequences for the mother and her unborn child. Women become resistant to placental malaria as antibodies are acquired which specifically target the surface of infected erythrocytes binding in the placenta. VAR2CSA is most likely the parasite-encoded protein which mediates binding to the placental receptor CSA. Several domains have been shown to bind CSA in vitro; and it is apparent that a VAR2CSA-based vaccine cannot accommodate all the CSA binding domains and serovariants. It is thus of high priority to define minimal ligand binding regions throughout the VAR2CSA molecule. METHODS: To define minimal CSA-binding regions/peptides of VAR2CSA, a phage display library based on the entire var2csa coding region was constructed. This library was screened on immobilized CSA and cells expressing CSA resulting in a limited number of CSA-binding phages. Antibodies against these peptides were affinity purified and tested for reactivity against CSA-binding infected erythrocytes. RESULTS: The most frequently identified phages expressed peptides residing in the parts of VAR2CSA previously defined as CSA binding. In addition, most of the binding regions mapped to surface-exposed parts of VAR2CSA. The binding of a DBL2X peptide to CSA was confirmed with a synthetic peptide. Antibodies against a CSA-binding DBL2X peptide reacted with the surface of infected erythrocytes indicating that this epitope is accessible for antibodies on native VAR2CSA on infected erythrocytes. CONCLUSION: Short continuous regions of VAR2CSA with affinity for multiple types of CSA were defined. A number of these regions localize to CSA-binding domains and to surface-exposed regions within these domains and a synthetic peptide corresponding to a peptide sequence in DBL2 was shown to bind to CSA and not to CSC. It is likely that some of these epitopes are involved in native parasite CSA adhesion. However, antibodies directed against single epitopes did not inhibit parasite adhesion. This study supports phage display as a technique to identify CSA-binding regions of large proteins such as VAR2CSA.


Assuntos
Antígenos de Protozoários/metabolismo , Sulfatos de Condroitina/metabolismo , Plasmodium falciparum/fisiologia , Animais , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/química , Antígenos de Protozoários/genética , Sítios de Ligação , Linhagem Celular , Humanos , Biblioteca de Peptídeos , Ligação Proteica , Estrutura Terciária de Proteína
18.
Infect Immun ; 76(4): 1791-800, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18250177

RESUMO

Pregnancy-associated malaria (PAM) is characterized by the placental sequestration of Plasmodium falciparum-infected erythrocytes (IEs) with the ability to bind to chondroitin sulfate A (CSA). VAR2CSA is a leading candidate for a pregnancy malaria vaccine, but its large size ( approximately 350 kDa) and extensive polymorphism may pose a challenge to vaccine development. In this study, rabbits were immunized with individual VAR2CSA Duffy binding-like (DBL) domains expressed in Pichia pastoris or var2csa plasmid DNA and sera were screened on different CSA-binding parasite lines. Rabbit antibodies to three recombinant proteins (DBL1, DBL3, and DBL6) and four plasmid DNAs (DBL1, DBL3, DBL5, and DBL6) reacted with homologous FCR3-CSA IEs. By comparison, antibodies to the DBL4 domain were unable to react with native VAR2CSA protein unless it was first partially proteolyzed with trypsin or chymotrypsin. To investigate the antigenic relationship of geographically diverse CSA-binding isolates, rabbit immune sera were screened on four heterologous CSA-binding lines from different continental origins. Antibodies did not target conserved epitopes exposed in all VAR2CSA alleles; however, antisera to several DBL domains cross-reacted on parasite isolates that had polymorphic loops in common with the homologous immunogen. This study demonstrates that VAR2CSA contains common polymorphic epitopes that are shared between geographically diverse CSA-binding lines.


Assuntos
Antígenos de Protozoários/imunologia , Reações Cruzadas/imunologia , Epitopos/imunologia , Vacinas Antimaláricas/imunologia , Plasmodium falciparum/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Antiprotozoários/sangue , Linhagem Celular , Feminino , Humanos , Malária Falciparum/imunologia , Dados de Sequência Molecular , Plasmodium falciparum/química , Polimorfismo Genético , Gravidez , Coelhos , Proteínas Recombinantes/imunologia
19.
PLoS Pathog ; 4(2): e42, 2008 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-18282103

RESUMO

Pregnancy-associated malaria is caused by Plasmodium falciparum malaria parasites binding specifically to chondroitin sulfate A in the placenta. This sequestration of parasites is a major cause of low birth weight in infants and anemia in the mothers. VAR2CSA, a polymorphic multi-domain protein of the PfEMP1 family, is the main parasite ligand for CSA binding, and identification of protective antibody epitopes is essential for VAR2CSA vaccine development. Attempts to determine the crystallographic structures of VAR2CSA or its domains have not been successful yet. In this study, we propose 3D models for each of the VAR2CSA DBL domains and we show that regions in the fold of VAR2CSA inter-domain 2 and a PfEMP1 CIDR domain seem to be homologous to the EBA-175 and Pk alpha-DBL fold. This suggests that ID2 could be a functional domain. We also identify regions of VAR2CSA present on the surface of native VAR2CSA by comparing reactivity of plasma containing anti-VAR2CSA antibodies in peptide array experiments before and after incubation with native VAR2CSA. By this method we identify conserved VAR2CSA regions targeted by antibodies that react with the native molecule expressed on infected erythrocytes. By mapping the data onto the DBL models we present evidence suggesting that the S1+S2 DBL sub-domains are generally surface-exposed in most domains, whereas the S3 sub-domains are less exposed in native VAR2CSA. These results comprise an important step towards understanding the structure of VAR2CSA on the surface of CSA-binding infected erythrocytes.


Assuntos
Antígenos de Protozoários/imunologia , Mapeamento de Epitopos , Eritrócitos/imunologia , Malária Falciparum/sangue , Plasmodium falciparum/imunologia , Complicações Parasitárias na Gravidez/sangue , Adulto , Animais , Antígenos de Protozoários/química , Sulfatos de Condroitina/metabolismo , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Feminino , Variação Genética , Humanos , Malária Falciparum/fisiopatologia , Masculino , Modelos Moleculares , Gravidez , Conformação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Coelhos , Proteínas Recombinantes
20.
Malar J ; 6: 78, 2007 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-17565661

RESUMO

BACKGROUND: The var multigene family encodes PfEMP1, which are expressed on the surface of infected erythrocytes and bind to various host endothelial receptors. Antigenic variation of PfEMP1 plays a key role in malaria pathogenesis, a process partially controlled at the level of var gene transcription. Transcriptional levels, throughout the intra-erythrocytic cycle, of 59 var genes of the NF54 clone were measured simultaneously by quantitative real-time PCR. The timing of var transcript abundance, the number of genes transcribed and whether transcripts were correctly spliced for protein expression were determined. Two parasite populations were studied; an unselected population of NF54 and a selected population, NF54VAR2CSA, to compare both the transcription of var2csa and the expression pattern of the corresponding protein. METHODS: Synchronized parasites were harvested at different time points along the 48 hours intra-erythrocytic cycle for extraction of RNA and for analysis of expression of variant surface antigens by flow cytometry. Total RNA from each parasite sample was extracted and cDNA synthesized. Quantitative real-time PCR was performed using gene-specific primers for all var genes. Samples for flow cytometry were labelled with rabbit IgG targeting DBL5epsilon of VAR2CSA and serum IgG from malaria-exposed men and pregnant women. RESULTS: var transcripts were detected at all time points of the intra-erythrocytic cycle by quantitative real-time PCR, although transcription peaked in ring-stage parasites. There was no difference in the timing of appearance of group A, B or C transcripts, and dominant and subdominant var transcripts appeared to be correctly spliced at all time points. VAR2CSA appeared on the surface of infected erythrocytes 16 hours after invasion, consistent with previous studies of other PfEMP1. Transcription of the pseudogene var1csa could not be detected in NF54VAR2CSA cells. CONCLUSION: The optimal sampling point for analysis of var transcripts using quantitative real-time PCR is the ring-stage, which is encouraging for the analysis of fresh clinical isolates. The data presented here indicate that there is no promiscuous transcription of var genes at the individual cell level and that it is possible to correlate dominant transcripts with adhesion phenotype and clinical markers of malaria severity.


Assuntos
Genes de Protozoários/fisiologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA Mensageiro/metabolismo , Animais , Técnicas de Cultura , Humanos , Malária Falciparum/classificação , Malária Falciparum/patologia , Fenótipo , Plasmodium falciparum/metabolismo , Reação em Cadeia da Polimerase , Proteínas de Protozoários/classificação , RNA Mensageiro/classificação , Índice de Gravidade de Doença , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...