Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav Evol ; 91(4): 201-213, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29961048

RESUMO

The causes of individual variation in behavior are often not well understood, and potential underlying mechanisms include both intrinsic and extrinsic factors, such as early environmental, physiological, and genetic differences. In an exploratory laboratory study, we raised three-spined sticklebacks (Gasterosteus aculeatus) under 4 different environmental conditions (simulated predator environment, complex environment, variable social environment, and control). We investigated how these manipulations related to behavior, brain physiology, and gene expression later in life, with focus on brain dopamine and serotonin levels, turnover rates, and gene expression. The different rearing environments influenced behavior and gene expression, but did not alter monoamine levels or metabolites. Specifically, compared to control fish, fish exposed to a simulated predator environment tended to be less aggressive, more exploratory, and more neophobic; and fish raised in both complex and variable social environments tended to be less neophobic. Exposure to a simulated predator environment tended to lower expression of dopamine receptor DRD4A, a complex environment increased expression of dopamine receptor DRD1B, while a variable social environment tended to increase serotonin receptor 5-HTR2B and serotonin transporter SLC6A4A expression. Despite both behavior and gene expression varying with early environment, there was no evidence that gene expression mediated the relationship between early environment and behavior. Our results confirm that environmental conditions early in life can affect phenotypic variation. However, the mechanistic pathway of the monoaminergic systems translating early environmental variation into observed behavioral responses was not detected.


Assuntos
Monoaminas Biogênicas/metabolismo , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Meio Ambiente , Smegmamorpha/crescimento & desenvolvimento , Smegmamorpha/metabolismo , Animais , Comportamento Exploratório , Feminino , Proteínas de Peixes/metabolismo , Expressão Gênica , Abrigo para Animais , Masculino , Fenótipo , Comportamento Predatório , Receptores Dopaminérgicos/metabolismo , Receptores de Serotonina/metabolismo , Comportamento Social
2.
Proc Natl Acad Sci U S A ; 114(50): 13218-13223, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29180408

RESUMO

With more than 80% of flowering plant species specialized for animal pollination, understanding how wild pollinators utilize resources across environments can encourage efficient planting and maintenance strategies to maximize pollination and establish resilience in the face of environmental change. A fundamental question is how generalist pollinators recognize "flower objects" in vastly different ecologies and environments. On one hand, pollinators could employ a specific set of floral cues regardless of environment. Alternatively, wild pollinators could recognize an exclusive signature of cues unique to each environment or flower species. Hoverflies, which are found across the globe, are one of the most ecologically important alternative pollinators after bees and bumblebees. Here, we have exploited their cosmopolitan status to understand how wild pollinator preferences change across different continents. Without employing any a priori assumptions concerning the floral cues, we measured, predicted, and finally artificially recreated multimodal cues from individual flowers visited by hoverflies in three different environments (hemiboreal, alpine, and tropical) using a field-based methodology. We found that although "flower signatures" were unique for each environment, some multimodal lures were ubiquitously attractive, despite not carrying any reward, or resembling real flowers. While it was unexpected that cue combinations found in real flowers were not necessary, the robustness of our lures across insect species and ecologies could reflect a general strategy of resource identification for generalist pollinators. Our results provide insights into how cosmopolitan pollinators such as hoverflies identify flowers and offer specific ecologically based cues and strategies for attracting pollinators across diverse environments.


Assuntos
Dípteros/fisiologia , Meio Ambiente , Flores/fisiologia , Modelos Biológicos , Polinização , Animais , Sinais (Psicologia) , Rhododendron/fisiologia
3.
Evolution ; 68(4): 1139-49, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24359469

RESUMO

Animal personalities range from individuals that are shy, cautious, and easily stressed (a "reactive" personality type) to individuals that are bold, innovative, and quick to learn novel tasks, but also prone to routine formation (a "proactive" personality type). Although personality differences should have important consequences for fitness, their underlying mechanisms remain poorly understood. Here, we investigated how genetic variation in brain size affects personality. We put selection lines of large- and small-brained guppies (Poecilia reticulata), with known differences in cognitive ability, through three standard personality assays. First, we found that large-brained animals were faster to habituate to, and more exploratory in, open field tests. Large-brained females were also bolder. Second, large-brained animals excreted less cortisol in a stressful situation (confinement). Third, large-brained animals were slower to feed from a novel food source, which we interpret as being caused by reduced behavioral flexibility rather than lack of innovation in the large-brained lines. Overall, the results point toward a more proactive personality type in large-brained animals. Thus, this study provides the first experimental evidence linking brain size and personality, an interaction that may affect important fitness-related aspects of ecology such as dispersal and niche exploration.


Assuntos
Encéfalo/anatomia & histologia , Personalidade/genética , Poecilia/genética , Animais , Comportamento Animal , Cognição , Hidrocortisona/metabolismo , Locomoção , Seleção Genética , Estresse Psicológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...