Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (162)2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32865525

RESUMO

Feedback control theory has been extensively implemented to theoretically model human sensorimotor control. However, experimental platforms capable of manipulating important components of multiple feedback loops lack development. This paper describes WheelCon, an open-source platform aimed at resolving such insufficiencies. Using only a computer, a standard display, and inexpensive gaming steering wheel equipped with a force feedback motor, WheelCon safely simulates the canonical sensorimotor task of riding a mountain bike down a steep, twisting, bumpy trail. The platform provides flexibility, as will be demonstrated in the demos provided, so that researchers may manipulate the disturbances, delay, and quantization (data rate) in the layered feedback loops, including a high-level advanced plan layer and a low-level delayed reflex layer. In this paper, we illustrate WheelCon's graphical user interface (GUI), the input and output of existing demos, and how to design new games. In addition, we present the basic feedback model and the experimental results from the demo games, which align well with the model's prediction. The WheelCon platform can be downloaded at https://github.com/Doyle-Lab/WheelCon. In short, the platform is featured to be cheap, simple to use, and flexible to program for effective sensorimotor neuroscience research and control engineering education.


Assuntos
Retroalimentação Sensorial , Jogos de Vídeo , Custos e Análise de Custo , Humanos , Internet
2.
Sci Robot ; 5(41)2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32607455

RESUMO

Existing electronic skin (e-skin) sensing platforms are equipped to monitor physical parameters using power from batteries or near-field communication. For e-skins to be applied in the next generation of robotics and medical devices, they must operate wirelessly and be self-powered. However, despite recent efforts to harvest energy from the human body, self-powered e-skin with the ability to perform biosensing with Bluetooth communication are limited because of lack of a continuous energy source and limited power efficiency. Here, we report a flexible and fully perspiration-powered integrated electronic skin (PPES) for multiplexed metabolic sensing in situ. The battery-free e-skin contains multimodal sensors and highly efficient lactate biofuel cells that use a unique integration of zero- to three-dimensional nanomaterials to achieve high power intensity and long-term stability. The PPES delivered a record-breaking power density of 3.5 milliwatt-centimeter-2 for biofuel cells in untreated human body fluids (human sweat) and displayed a very stable performance during a 60-hour continuous operation. It selectively monitored key metabolic analytes (e.g., urea, NH4 +, glucose, and pH) and the skin temperature during prolonged physical activities and wirelessly transmitted the data to the user interface using Bluetooth. The PPES was also able to monitor muscle contraction and work as a human-machine interface for human- prosthesis walking.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Humanos , Contração Muscular , Nanopartículas , Robótica/instrumentação , Robótica/métodos , Temperatura Cutânea , Suor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...