Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Divers ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38609691

RESUMO

4-Hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27; HPPD) is one of the important target enzymes in the development of herbicides. To discover novel HPPD inhibitors with unique molecular, 39 cyclohexanedione derivations containing pyrazole and pyridine groups were designed and synthesized. The preliminary herbicidal activity test results showed that some compounds had obvious inhibitory effects on monocotyledon and dicotyledonous weeds. The herbicidal spectrums of the highly active compounds were further determined, and the compound G31 exhibited the best inhibitory rate over 90% against Plantago depressa Willd and Capsella bursa-pastoris at the dosages of 75.0 and 37.5 g ai/ha, which is comparable to the control herbicide mesotrione. Moreover, compound G31 showed excellent crop safety, with less than or equal to 10% injury rates to corn, sorghum, soybean and cotton at a dosage of 225 g ai/ha. Molecular docking and molecular dynamics simulation analysis revealed that the compound G31 could stably bind to Arabidopsis thaliana HPPD (AtHPPD). This study indicated that the compound G31 could be used as a lead molecular structure for the development of novel HPPD inhibitors, which provided an idea for the design of new herbicides with unique molecular scaffold.

2.
Adv Mater ; 34(3): e2106502, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34750894

RESUMO

Monolayer transition metal dichalcogenides (TMDs) have emerged as widely accepted 2D gain materials in the field of light sources owing to their direct bandgap and high photoluminescence quantum yield. However, the monolayer medium suffers from weak emission because only a single layer of molecules can absorb the pump energy. Moreover, the material degradation when transferring these fragile materials hinders their cooperation with the optical cavity further. In this study, for the first time, a high-quality monolithic structure is developed by directly growing single-domain tungsten diselenide (WSe2 ) bilayers on single silica microsphere (MS) cavities. Such a completely wrapped structure guides the indirect-to-direct bandgap transition of WSe2 bilayers, leading to a significantly improved photoluminescence intensity by about 60-fold. Moreover, the high-quality monolithic structure enhances the confinement factor of the cavity by more than 20-fold. Based on the above advantages, a bilayer WSe2 /MS microlaser is realized with an ultralow threshold of 0.72 W cm-2 , nearly an order of magnitude lower than the existing records. The results demonstrate the possibility of using multilayer TMD materials as 2D gain media and provide insights into a new ultracompact monolithic platform of TMD material/cavity for lasing devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...