Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IUBMB Life ; 73(12): 1446-1459, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34717033

RESUMO

Spermatogenesis is a complex process that requires precise regulation. Phosphorylation plays a role in spermatogenesis by regulating protein structure and activity. This study focused on cyclin-dependent kinase 7 (CDK7), and explored its function and molecular mechanisms in spermatogenesis in vitro in a cell line and in vivo in a mouse model. Inhibition of CDK7 activity affected spermatogonia proliferation and differentiation, and we found that CDK7 regulates retinoic acid (RA)-mediated c-KIT expression to play a role in spermatogonia. Then, we demonstrated that inhibition of CDK7 affected meiosis initiation, DNA repair, and synaptonemal complex formation in meiosis progression, and CDK7 played this role by regulating RA-mediated STRA8 and REC8 signaling pathways. Moreover, inhibition of CDK7 impacted spermatid differentiation and resulted in decreased counts, decreased motility, and increased head deformity of sperm. We demonstrated that CDK7 affects germ cell apoptosis and sperm motility by activating STAT3 and that STAT3 further regulates Cortactin expression to influence the nuclear elongation, chromatin condensation, and acrosome formation of sperm. Additionally, EP300 was identified as another potential target phosphorylated by CDK7 that participates in chromatin condensation. Our results demonstrated the important role of CDK7 in all key aspects of spermatogenesis, potentially providing an effective target for clinical diagnosis and pathogenesis.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Motilidade dos Espermatozoides , Tretinoína , Animais , Quinases Ciclina-Dependentes/genética , Masculino , Meiose , Camundongos , Transdução de Sinais , Espermatogênese/genética , Tretinoína/metabolismo , Tretinoína/farmacologia
2.
Front Cell Dev Biol ; 9: 623738, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763418

RESUMO

Spermatogenesis requires a large number of proteins to be properly expressed at certain stages, during which post-transcriptional regulation plays an important role. RNA-binding proteins (RBPs) are key players in post-transcriptional regulation, but only a few RBPs have been recognized and preliminary explored their function in spermatogenesis at present. Here we identified a new RBP tubby-like protein 2 (TULP2) and found three potential deleterious missense mutations of Tulp2 gene in dyszoospermia patients. Therefore, we explored the function and mechanism of TULP2 in male reproduction. TULP2 was specifically expressed in the testis and localized to spermatids. Studies on Tulp2 knockout mice demonstrated that the loss of TULP2 led to male sterility; on the one hand, increases in elongated spermatid apoptosis and restricted spermatid release resulted in a decreased sperm count; on the other hand, the abnormal differentiation of spermatids induced defective sperm tail structures and reduced ATP contents, influencing sperm motility. Transcriptome sequencing of mouse testis revealed the potential target molecular network of TULP2, which played its role in spermatogenesis by regulating specific transcripts related to the cytoskeleton, apoptosis, RNA metabolism and biosynthesis, and energy metabolism. We also explored the potential regulator of TULP2 protein function by using immunoprecipitation and mass spectrometry analysis, indicating that TUPL2 might be recognized by CCT8 and correctly folded by the CCT complex to play a role in spermiogenesis. Our results demonstrated the important role of TULP2 in spermatid differentiation and male fertility, which could provide an effective target for the clinical diagnosis and treatment of patients with oligo-astheno-teratozoospermia, and enrich the biological theory of the role of RBPs in male reproduction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...