Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38611161

RESUMO

In this study, the effects of ambient temperature on the horizontal mechanical performance of isolated rubber bearings were investigated using high-speed reciprocating loading methods. A comprehensive series of 54 experimental trials are performed on the full-scale (900 mm-diameter) isolation rubber bearings, encompassing a range of temperatures (-20 °C, 0 °C, and 23 °C), shear pressures (50%, 100%, and 250%), and frequencies (0.20 Hz, 0.25 Hz, and 0.30 Hz). Because the compression-shear tests were conducted at high velocities and pressures (specifically, vertical compressive stress of 15 MPa), the equipment used in these tests was capable of generating substantial inertial and frictional forces. Appropriate correction methodologies for the precise determination of mechanical performance metrics for bearings are presented. Then, a comprehensive investigation of the effects of various loading conditions on the characteristic strength, post-yield stiffness, horizontal equivalent stiffness, and equivalent damping ratio of LRB900 (lead-core rubber bearings 900 mm-diameter) and LNR900 (linear natural rubber bearings 900 mm-diameter) is conducted. The empirical results show a discernible relationship between these characteristics and ambient temperature as the number of loading cycles increases, except for the equivalent damping ratio. Finally, empirical fitting formulations incorporating the influence of ambient temperature are presented for each performance indicator. These formulas are intended to assist designers in performing seismic design analyses by allowing them to take into consideration the effects of ambient temperature comprehensively.

2.
Polymers (Basel) ; 14(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36559761

RESUMO

With the rapid development of the economy and urbanization, the construction of the urban rail transit system has had a great impact on the work, life, and health of residents in buildings along the rail transit line. Thus, it is particularly urgent and necessary to develop base isolation technologies to control and reduce the impact of vibrations of rail transit systems on building structures. High-damping rubber isolation bearings have shown significant effectiveness in the reduction of this impact, and their isolation performance mainly depends on the mechanical and damping energy dissipation characteristics of the high-damping rubber material. This paper aims to investigate the hyper-viscoelastic properties of the high-damping rubber material used for high-damping rubber isolation bearings during the cyclic tension and compression process in the vertical direction. These properties include hyperelastic parameters, viscoelastic coefficients, and the relaxation times of the material. For this purpose, uniaxial cyclic tension and compression tests were conducted. A three-element Maxwell rheological model combining a strain energy density function was proposed for modeling the hyper-viscoelastic behaviors of the materials during the cyclic tension and compression process. Based on the obtained results, an iterative identification procedure was used to determine the constitutive parameters of the material for each loading-unloading cycle. The aforementioned parameters were further expressed as a function of the number of cycles. New insights into hyper-viscoelastic property changes in this high-damping rubber material during the cyclic tension and compression process were gained in this work. These investigations could facilitate the development of computational tools, which would regulate fundamental guidelines for the better controlling and optimization of the isolation performance of the high-damping rubber material used for high-damping rubber isolation bearings, which have a wider perspective of applications in the urban rail transit system.

3.
Polymers (Basel) ; 14(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35746004

RESUMO

At present, high-damping rubber materials, widely used in the field of engineering seismic isolation, generally have the problems such as narrow effective damping temperature range, low damping loss factor and strong temperature dependence, which lead to prominent dependence of temperature and load conditions of the isolation performance of high-damping rubber isolation bearings. Research and development of high-performance high-damping rubber materials with broad effective damping temperature range, high damping loss factor and weak temperature dependence are very urgent and necessary to ensure the safety of the seismic isolation of engineering structures. This paper mainly reviews the recent progress in the research and development of high-damping rubber materials using nitrile butadiene rubber (NBR), epoxidized natural rubber (ENR), ethylene propylene diene rubber (EPDM), butyl rubber (IIR), chlorinated butyl rubber (CIIR), and bromine butyl rubber (BIIR). This is followed by a review of vulcanization and filler reinforcement systems for the improvement of damping and mechanical properties of high-damping rubber materials. Finally, it further reviews the constitutive models describing the hyperelasticity and viscoelasticity of rubber materials. In view of this focus, four key issues are highlighted for the development of high-performance high-damping rubber materials used for high-damping rubber isolation bearings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...