Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38202830

RESUMO

With the growing emphasis on green chemistry and the ecological environment, researchers are increasingly paying attention to greening materials through the use of carbon-based solid acids. The diverse characteristics of carbon-based solid acids can be produced through different preparation conditions and modification methods. This paper presents a comprehensive summary of the current research progress on carbon-based solid acids, encompassing common carbonization methods, such as one-step, two-step, hydrothermal, and template methods. The composition of carbon source material may be the main factor affecting its carbonization method and carbonization temperature. Additionally, acidification types including sulfonating agent, phosphoric acid, heteropoly acid, and nitric acid are explored. Furthermore, the functions of carbon-based solid acids in esterification, hydrolysis, condensation, and alkylation are thoroughly analyzed. This study concludes by addressing the existing drawbacks and outlining potential future development prospects for carbon-based solid acids in the context of their important role in sustainable chemistry and environmental preservation.

2.
Water Res ; 245: 120672, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37783176

RESUMO

Hydrothermal processing (HTP) is an efficient thermochemical technology to achieve sound treatment and resource recovery of sewage sludge (SS) in hot-compressed subcritical water. However, microplastics (MPs) and heavy metals can be problematic impurities for high-quality nutrients recovery from SS. This study initiated hydrothermal degradation of representative MPs (i.e., polyethylene (PE), polyamide (PA), polypropylene (PP)) under varied temperatures (180-300 °C) to understand the effect of four ubiquitous metal ions (i.e., Fe3+, Al3+, Cu2+, Zn2+) on MPs degradation. It was found that weight loss of all MPs in metallic reaction media was almost four times of that in water media, indicating the catalytic role of metal ions in HTP. Especially, PA degradation at 300 °C was promoted by Fe3+ and Al3+ with remarkable weight loss higher than 95% and 92%, respectively, which was ca. 160 °C lower than that in pyrolysis. Nevertheless, PE and PP were more recalcitrant polymers to be degraded under identical condition. Although higher temperature thermal hydrolysis reaction induced severe chain scission of polymers to reinforce degradation of MPs, Fe3+ and Al3+ ions demonstrated the most remarkable catalytic depolymerization of MPs via enhanced free radical dissociation rather than hydrolysis. Pyrolysis gas chromatography-mass spectrometry (Py GC-MS) was further complementarily applied with GC-MS to reveal HTP of MPs to secondary MPs and nanoplastics. This fundamental study highlights the crucial role of ubiquitous metal ions in MPs degradation in hot-compressed water. HTP could be an energy-efficient technology for effective treatment of MPs in SS with abundant Fe3+ and Al3+, which will benefit sustainable recovery of cleaner nutrients in hydrochar and value-added chemicals or monomers from MPs.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Humanos , Microplásticos , Plásticos/química , Metais Pesados/química , Esgotos/química , Polietileno , Polipropilenos , Nylons , Água , Redução de Peso , Poluentes Químicos da Água/análise
3.
J Colloid Interface Sci ; 652(Pt B): 1743-1755, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37672977

RESUMO

In this study, the boron-doped iron-carbon composite (Fe@B/C-2) was prepared via a simple solvothermal and secondary calcination process by using iron metal-organic frameworks (Fe-MOFs) as precursor. The obtained Fe@B/C-2 possessed abundant active sites and low iron ion leaching, and exhibited excellent performance on peroxydisulfate (PDS) activation for efficient PFOS (10 mg/L) degradation (94 %) in 60 min, with 0.2 g/L of catalyst dosage, 1.0 g/L of PDS dosage and at 5.0 of initial pH. The radical scavenging and electron paramagnetic resonance (EPR) tests demonstrated that SO4·- and ·OH were the primary active species during PFOS elimination. Under the attack of these species, PFOS was first transformed into PFOA, followed by a sequential defluorination process, and lastly mineralized into CO2 and F-. Notably, DFT results revealed that Fe species, -BC3/-BC2O structures on the carbon matrix performed crucial roles in PDS activation. The extraordinary catalytic activity of Fe@B/C-2 was attributable to the synergistic effects of Fe nanoparticles and the B-doped on carbon matrix. The doped B not only could activate the inert carbon skeleton and provided more catalytic centers, but also could accelerate the electron transfer efficiency, leading to a boost in PDS decomposition.

4.
Bioresour Technol ; 366: 128188, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36309175

RESUMO

Microalgae have been shown to have a promising potential for CO2 utilization and wastewater treatment which still faces the challenges of high resource and energy requirements. The implementation of the circular economy concept is able to address the issues that limit the application of microalgae-based technologies. In this review, a comprehensive discussion on microalgae-based CO2 utilization and wastewater treatment was provided, and the integration of this technology with the circular economy concept, for long-term economic and environmental benefits, was described. Furthermore, technological challenges and feasible strategies towards the improvement of microalgae cultivation were discussed. Finally, necessary regulations and effective policies favoring the implementation of microalgae cultivation into the circular economy were proposed. These are discussed to support sustainable development of microalgae-based bioremediation and bioproduction. This work provides new insights into the implementation of the circular economy concept into microalgae-based CO2 utilization and wastewater treatment to enhance sustainable production.


Assuntos
Microalgas , Purificação da Água , Dióxido de Carbono , Biomassa , Biodegradação Ambiental , Águas Residuárias , Biocombustíveis
6.
Sci Total Environ ; 847: 157658, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35908703

RESUMO

In this study, the microwave-assisted pyrolysis coupled with ex-situ catalytic reforming of polyethylene for naphtha range hydrocarbons, with low aromatic content, was investigated. Experimental results revealed that ZSM-5 zeolites with low SiO2/Al2O3 ratios led to high aromatic selectivity, while an extremely high SiO2/Al2O3 ratio significantly reduced the aromatic selectivity. The high selectivity of C5-C12 hydrocarbons (98.9 %) with low selectivity of C5-C12 aromatics (28.5 %) was obtained over a high silica ZSM-5 zeolite at a pyrolysis temperature of 500 °C, catalytic cracking temperature of 460 °C, and a weight hourly space velocity of 7 h-1. The liquid oil produced was mainly composed of C5-C12 olefins that can be easily converted into paraffin-rich naphtha by hydrogenation or hydrogen transfer reactions as the feedstock for new plastic manufacturing. 8 cycles of regeneration-reaction cycles were carried out successfully with little change on the product distribution, showing the great potential for continuous production of low-aromatic liquid oil. Catalyst characterization showed that the catalyst deactivation was primarily caused by coke deposition (approximately 16.0 wt%) on the surface of the catalysts, and oxidative regeneration was able to recover most of the pore structure and acidity of the zeolite by effectively removing coke. This study provides a better understanding for the plastic-to-naphtha process and even for scale-up studies.

7.
Sci Total Environ ; 809: 152182, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34883177

RESUMO

It is promising to convert waste oil and plastics to renewable fuels and chemicals by microwave catalytic co-pyrolysis, enabling pollution reduction and resource recovery. The purpose of this study was to evaluate the effect of catalysts on the product selectivity of microwave-assisted co-pyrolysis of waste cooking oil and low-density polyethylene and optimize the pyrolysis process, including pyrolysis temperature, catalytic temperature, waste cooking oil to low-density polyethylene ratio, and catalyst to feedstocks ratio. The results indicated that catalysts had a great influence on the product distribution, and the yield of BTX (benzene, toluene, and xylenes), which increased in the following order: SAPO-34 < Hß < HY < HZSM-5. HZSM-5 was more active for the formation of light aromatic hydrocarbons as compared to others, where the concentrations of toluene, benzene and xylenes reached 252.59 mg/mL, 114.7 mg/mL and 132.91 mg/mL, respectively. The optimum pyrolysis temperature, catalytic temperature, waste cooking oil to low-density polyethylene ratio and catalyst to feedstocks ratio could be 550 °C, 450 °C, 1:1 and 1:2, respectively, to maximize the formation of BTX and inhibit the formation of polycyclic aromatic hydrocarbons.


Assuntos
Hidrocarbonetos Aromáticos , Pirólise , Biocombustíveis , Catálise , Culinária , Temperatura Alta , Hidrocarbonetos , Micro-Ondas , Polietileno
8.
Bioresour Technol ; 341: 125800, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34438288

RESUMO

A novel Silicon carbide (SiC) foam ceramic based ZSM-5/SiC nanowires microwave-responsive catalyst was developed to upgrade the pyrolysis volatiles in a microwave-assisted series system (both the pyrolysis and catalytic systems were heated by microwave). The growth of SiC nanowires was helpful for the ZSM-5 growth on the SiC foam ceramic. Because the specific surface area of SiC foam ceramic was improved. The dielectric properties of the composite catalyst were improved due to the growth of SiC nanowires. Bio-oil composition analysis showed that area percentage of hydrocarbons and aromatic hydrocarbons could reach 80.89% and 40.48% at catalytic temperature of 450 ℃and 500 ℃, respectively. The microwave-responsive composite catalyst had good aromatization performance in microwave-assisted series system due to high dielectric properties and specific surface area. The composite catalyst performed well after five-cycle regeneration, and the hydrocarbon content could still reach 76.40%, which is 80.89% for the original catalyst.


Assuntos
Micro-Ondas , Pirólise , Biocombustíveis , Catálise , Temperatura Alta , Hidrocarbonetos , Óleos de Plantas , Polifenóis , Glycine max
9.
Sci Total Environ ; 771: 144995, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33545487

RESUMO

In this work, catalytic fast pyrolysis of low density polyethylene (LDPE) into highly valuable naphtha by the relay catalysis (Al2O3 followed by ZSM-5 zeolite) was conducted. Effects of different catalysts, pyrolysis temperatures, catalyst to plastic ratio, and Al2O3 to ZSM-5 ratio, on product distribution and selectivity were studied. Al2O3 shows an excellent performance for catalytic reforming of LDPE pyrolysis vapors, mainly producing C5-C23 olefins that are the important precursors to form aromatics via Diels-Alder, aromatization, and polymerization reactions in the pores of ZSM-5 catalyst. Experimental results also show that the selectivity of monoaromatics and C5-C12 alkanes/olefins can be up to 100% over Al2O3 followed by ZSM-5 relay catalysis at the temperature of 550 °C, the catalyst to plastic ratio of 4:1, and Al2O3 to ZSM-5 ratio of 1:1. The product (monoaromatics and C5-C12 alkanes/olefins), naphtha, could be a renewable feedstock for new plastic production in the petroleum industry so that this finding might provide a new insight for a circular economy.

10.
Bioresour Technol ; 320(Pt B): 124415, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33221644

RESUMO

The effects of K and Ca on the pyrolysis of rice straw were studied. The results showed that impregnating a certain amount of Ca is beneficial to the uniform distribution of K, and mixing a certain amount of K is also beneficial to the uniform distribution of Ca. Ca and K would combine with the silicon-aluminum compound in the sample during the pyrolysis and become invalid. Ca can effectively reduce the invalid K, but cannot completely protect K from combining with the silicon-aluminum compound. The binary metal carbonates K2Ca(CO3)2 and K2Ca2(CO3)3 were produced during the pyrolysis of the samples, which have a limited effect for the uniform distribution of the catalysts. In addition, acid-leaching removed most of the inorganic components in rice straw, which made it difficult for the catalyst to be evenly distributed, indicating that the inorganic components play an important role in evenly distributing the catalyst.


Assuntos
Cálcio , Pirólise , Biomassa , Catálise , Temperatura Alta , Potássio
11.
Sci Total Environ ; 749: 142386, 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33370899

RESUMO

Increasing fossil fuel consumption and global warming has been driving the worldwide revolution towards renewable energy. Biomass is abundant and low-cost resource whereas it requires environmentally friendly and cost-effective conversion technique. Pyrolysis of biomass into valuable bio-oil has attracted much attention in the past decades due to its feasibility and huge commercial outlook. However, the complex chemical compositions and high water content in bio-oil greatly hinder the large-scale application and commercialization. Therefore, catalytic pyrolysis of biomass for selective production of specific chemicals will stand out as a unique pathway. This review aims to improve the understanding for the process by illustrating the chemistry of non-catalytic and catalytic pyrolysis of biomass at the temperatures ranging from 400 to 650 °C. The focus is to introduce recent progress about producing value-added hydrocarbons, phenols, anhydrosugars, and nitrogen-containing compounds from catalytic pyrolysis of biomass over zeolites, metal oxides, etc. via different reaction pathways including cracking, Diels-Alder/aromatization, ketonization/aldol condensation, and ammoniation. The potential challenges and future directions for this technique are discussed in deep.


Assuntos
Biocombustíveis , Pirólise , Biomassa , Catálise , Temperatura Alta , Lignina
12.
Bioresour Technol ; 314: 123756, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32629378

RESUMO

In light of the knowledge gap in the scale-up of microwave-assisted pyrolysis technology, this study developed a continuous microwave-assisted pyrolysis (CMAP) system and examined its feasibility for syngas production. Wood pellets were pyrolyzed in the system under various temperatures, and the product distribution and energy efficiency were investigated. At a processing temperature of 800 °C, the CMAP system obtained a high quality producer gas (lower heating value 18.0 MJ/Nm3 and a 67 vol% syngas content) at a yield of 72.2 wt% or 0.80 Nm3/kg d.a.f. wood, outperforming several conventional pyrolysis processes probably due to two factors: 1) reactions between primary tar and biochar enhanced by microwave irradiation, and 2) the absence of carrier gas in the process. Energy efficiency of the process was also assessed. Potentially the electricity consumption could be reduced from 7.2 MJ to 3.45 MJ per kg of wood, enabling net electricity production from the process.


Assuntos
Micro-Ondas , Pirólise , Biomassa , Temperatura Alta , Temperatura , Madeira
13.
Bioresour Technol ; 310: 123475, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32402989

RESUMO

The solid waste from papermaking factory, lime mud (LM), was previously demonstrated as an effective catalyst in biomass pyrolysis. Since understanding the kinetics and thermodynamics is the critical step for pyrolysis development, thereby the effect of LM on the kinetics and thermodynamics for biomass pyrolysis was systematically investigated in this study. More specifically, two representative biomasses, herbaceous corncob and woody aspen sawdust, were blended with LM at different mass ratio of 0:0, 0.5:1, 1:1, and 2:1. Based on this, pyrolysis was conducted through thermogravimetry under nitrogen atmosphere. The kinetic parameters of activation energy and pre-exponential factor were calculated by iso-conventional method. While the Avrami theory was used to determine the reaction order. Thermodynamic parameters were also calculated and compared with those of non-catalytic pyrolysis.


Assuntos
Pirólise , Biomassa , Compostos de Cálcio , Cinética , Óxidos , Termodinâmica , Termogravimetria
14.
Bioresour Technol ; 302: 122843, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32006926

RESUMO

The composite catalysts were synthesized with SiC powder and ZSM-5 and were characterized by Brunauer-Emmett-Teller, X-ray diffraction, thermogravimetric analysis, pyridine-infrared spectroscopy, and scanning electron microscopy. The catalysts showed a high heating rate and excellent catalytic performance for pyrolysis vapors, and the product fractional distribution and chemical compositions of bio-oil in a tandem system (microwave pyrolysis and microwave ex-situ catalytic reforming) was examined. Experimental results confirmed the quality of bio-oil produced by the microwave-induced catalytic reforming was better than that product through electric heating. Additionally, 36.94 wt% of bio-oil was obtained using the catalyst with 20%ZSM-5/SiC under the following conditions: feed-to-catalyst ratio, 2:1; pyrolysis temperature, 550 °C; and catalytic temperature, 350 °C. The selectivities of hydrocarbons reached up to 75.88%. After five cycles, the activity of the regenerated composite catalyst was retained at 95% of the original catalyst.


Assuntos
Glycine max , Micro-Ondas , Biocombustíveis , Catálise , Calefação , Temperatura Alta , Óleos de Plantas , Polifenóis , Pirólise
15.
Environ Res ; 182: 108988, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31821986

RESUMO

The integrated process of formic acid pretreatment and pyrolysis of bamboo sawdust (BS) under microwave irradiation is developed to produce high-quality bio-oil in this study. Experimental results indicated that microwave-assisted formic acid (MFA) pretreatment was able to reduce the contents of hydrogen, ash, and volatile in biomass. In the meanwhile, a distinct increase in the higher heating value of pretreated BS was observed. Although a higher pretreatment temperature led to lower mass yield, the corresponding energy yield of solid product was remarkably higher. X-ray diffraction and Fourier transfer infrared spectrometry analyses of pretreated BS suggested that MFA pretreatment could destruct the pristine structure of BS. Therefore, thermal properties of pretreated BS were significantly altered in terms of thermal stability and decomposition temperature according to thermogravimetric analysis. Microwave-assisted pyrolysis of pretreated samples could produce less acids, phenols, and ketones but more sugars, especially gluopyranose. Furthermore, the relevant mechanism of microwave-assisted pyrolysis of pretreated BS was interpreted. In sum, MFA was a feasible and promising technology to improve the quality of bio-oil from microwave pyrolysis of biomass.


Assuntos
Formiatos , Micro-Ondas , Pirólise , Biocombustíveis , Biomassa , Temperatura Alta , Óleos de Plantas , Polifenóis
16.
Bioresour Technol ; 297: 122490, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31812595

RESUMO

The effects of torrefaction pretreatment on corncobs properties and its pyrolysis kinetic parameters were investigated in this study. Proximate and ultimate analyses indicated that torrefaction increased the H/Ceff ratio and higher heating value of corncobs, and reduced its oxygen content. Although the mass yield was also reduced, the corresponding energy yield was relatively higher. The crystallinity index of biomass showed a first upward and then downward trend with the torrefaction temperature. Kinetic parameters obtained from three models indicated that both the activation energy and the pre-exponential factor increased with the elevated torrefaction temperature and it's better to calculate the activation energy by the OFW method and to use the KAS and DAEM methods to calculate the pre-exponential factor. In addition, it was found that the optimum pretreatment temperature of corncobs was 240 °C.


Assuntos
Zea mays , Biomassa , Cinética , Temperatura , Termogravimetria
17.
Environ Int ; 134: 105340, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31775092

RESUMO

Shrimp processing and consumption generate large amounts of waste shrimp shell (WSS) rich in chitin and protein. Herein, we successfully synthesized WSS-based hydrochar (WSH) adsorbent through deproteinization and deacetylation followed by hydrothermal carbonization (HTC) and acid washing. For comparison, another hydrochar (CCH) adsorbent was synthesized from HTC of commercial chitosan under identical conditions. Specifically, WSH contained rich nitrogen-containing functional groups with a long aliphatic chains structure. Acid etching of calcium carbonate in WSS led to a higher specific surface area of WSH (12.65 m2/g) which was nearly 6 times higher than that of CCH (2.13 m2/g). The lower deacetylation degree of WSH was responsible for higher amide I and amino groups retained therein. Under an optimal initial solution pH of 4.0, WSH could rapidly achieve a superb adsorption capacity of 755.08 mg/g for methyl orange molecule. Moreover, the adsorption process followed a pseudo-second-order kinetics model and was well described by a monolayer adsorption pattern based on the Langmuir isotherm model with correlation coefficients higher than 0.9989. Prominent adsorption performance of WSH for methyl orange was mainly attributed to electrostatic interactions, while steric hindrance effect had a detrimental impact on the adsorption capacity of CCH. Superb adsorption capacity and excellent regeneration performance suggest WSH could be a promising and affordable adsorbent candidate for anionic dye removal.


Assuntos
Exoesqueleto , Compostos Azo/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Animais , Crustáceos , Concentração de Íons de Hidrogênio , Cinética , Água
18.
Bioresour Technol ; 299: 122611, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31874451

RESUMO

Microwave-assisted co-pyrolysis of low hydrogen-to-carbon and high hydrogen-to-carbon effective ratio materials with the aid of HZSM-5 and MCM-41 is a promising technique to improve the bio-oil quality. The low content of hydrocarbons and short life cycle of catalyst limit the application of pyrolysis technology in biomass energy conversion. The effects of catalytic temperature, and HZSM-5-to-MCM-41, feedstock-to-catalyst, and straw-to-soapstock ratios on the yield and composition of bio-oil were studied in this work. The quality of bio-oil during biomass pyrolysis can be improved by adjusting the operating conditions. The optimal catalytic temperature, and ratios of HZSM-5-to-MCM-41, feedstock-to-catalyst, and straw-to-soapstock were 400 °C, 1:1, 2:1, and 1:2, respectively. The addition of MCM-41 was beneficial in prolonging the life of HZSM-5 since the macromolecular compounds cracked when MCM-41 was added which restrain the generation of coke. The co-pyrolysis of soapstock with straw advanced the deoxygenation of oxygen-containing compounds especially phenol from straw during pyrolysis.


Assuntos
Micro-Ondas , Pirólise , Biocombustíveis , Biomassa , Catálise , Temperatura Alta , Óleos de Plantas , Polifenóis , Dióxido de Silício
19.
Bioresour Technol ; 289: 121609, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31212171

RESUMO

Microwave-assisted catalytic fast co-pyrolysis (MACFP) of lignin and waste oil with SiC as microwave absorbent and hierarchical ZSM-5/MCM-41 as catalyst were implemented in a microwave-induced reactor. ZSM-5/MCM-41 is a kind of composite catalyst with MCM-41 as shell and ZSM as core. The effects of catalyst temperature, the ratio of feedstock-to-catalyst and the ratio of two reactants (lignin and waste oil) on product distribution and yield were studied. The study shows that catalytic co-pyrolysis is a complex reaction process, and many reaction conditions could affect the final reaction results. The optimum reaction conditions are as follows: catalytic temperature 400 °C, the feedstock-to-catalyst ratio of 10:1 and the ratio of lignin to waste oil of 2:1. Under this reaction condition, the conversion of feedstocks reached 76.00%, the proportion of aromatics was 50.31% and the selectivity of monocyclic aromatic hydrocarbons (MAHs) was 42.83%.


Assuntos
Hidrocarbonetos Aromáticos , Lignina , Catálise , Micro-Ondas , Pirólise , Dióxido de Silício
20.
Waste Manag ; 88: 102-109, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31079622

RESUMO

Continuous fast microwave catalytic co-pyrolysis of Alternanthera philoxeroides and peanut soapstock was studied using HZSM-5 as catalyst. The effects of catalyst temperature, feedstock-to-catalyst ratio, and A. philoxeroides-to-peanut soapstock ratio on the yield and composition of bio-oil were studied. Experimental results showed that the optimum catalyst temperature was 400 °C. The catalyst increased the proportion of aromatics but reduced the bio-oil yield. The optimum feedstock-to-catalyst ratio was 2:1. A. philoxeroides presented a significant synergistic effect with peanut soapstock, which facilitated the production of aromatics in the bio-oil. The optimum A. philoxeroides-to-peanut soapstock ratio was 1:2.


Assuntos
Arachis , Micro-Ondas , Biocombustíveis , Catálise , Temperatura Alta , Pirólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...