Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36629479

RESUMO

Three-dimensional chiral metallic metamaterials have already attracted extensive attention in the wide research fields of chiroptical responses. These artificial chiral micronanostructures, possessing strong chiroptical signals, show huge significance in next-generation photonic devices and chiroptical spectroscopy techniques. However, most of the existing chiral metallic metamaterials are designed for generating chiroptical signals dependent on photonic spin angular momentum (SAM). The chiral metallic metamaterials for generating strong chiroptical responses by photonic orbital angular momentum (OAM) remain unseen. In this work, we fabricate copper microhelices with opposite handedness by additively manufacturing and further examine their OAM-dominated chiroptical response: helical dichroism (HD). The chiral copper microhelices exhibit differential reflection to the opposite OAM states, resulting in a significant HD signal (∼50%). The origin of the HD can be theoretically explained by the difference in photocurrent distribution inside copper microhelices under opposite OAM states. Moreover, the additively manufactured copper microhelices possess an excellent microstructural stability under varying annealing temperatures for robust HD responses. Lower material cost and noble-metal-similar optical properties, accompanied with well thermal stability, render the copper microhelices promising metamaterials in advanced chiroptical spectroscopy and photonic OAM engineering.

2.
ACS Appl Mater Interfaces ; 14(46): 52370-52378, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36349689

RESUMO

Millirobots that can be actuated and accurately steered by external magnetic fields, are highly desirable for bioengineering and wearable devices. However, existing designs of millirobots are limited by their specific material composition, hindering their wider application due to a lack of scalability. Here, we present a method for the generation of heterogeneous magnetic millirobots based on magnetic coatings. The coatings, composed of hard-magnetic CrO2 particles dispersed in an adhesive solution, impart magnetic actuation to diverse substrates with planar sheets or 3D structures. Millirobots constructed from the coatings can be readily reprogrammed with intricate magnetization profiles using laser localized heating, enabling reconfigurable shape changes under magnetic actuation. Using this approach, we demonstrate on-demand maneuvering capability of reconfiguring locomotion involving crawling, overturning and rolling with a single millirobot. Various functions, including the ability to catch a fast-moving ball, object transportation, and targeted assembly, have been achieved. This adhesive strategy facilitates the design of millirobots and may open avenues to the creation of complex millirobots for broad applications.

3.
Nano Lett ; 21(21): 9301-9309, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34709839

RESUMO

Natural organisms can create various microstructures via a spontaneous growth mode. In contrast, artificial protruding microstructures are constructed by subtractive methods that waste materials and time or by additive methods that require additional materials. Here, we report a facile and straightforward strategy for a laser-induced self-growing mushroom-like microstructure on a flat surface. By simply controlling the localized femtosecond laser heating and ablation on the poly(ethylene terephthalate) tape/heat-shrinkable polystyrene bilayer surface, it is discovered that a mushroom-like architecture can spontaneously and rapidly grow out from the original surface within 0.36 s. The dimension of the re-entrant micropillar array (cap diameter, pillar spacing, and height) can be accurately controlled through the intentional control of laser scanning. Followed by a fluorination and spray coating, the obtained surface can realize the repellency and manipulation of oil droplets. This work provides new opportunities in the fields of microfabrication, microfluidics, microreactor engineering, and wearable antifouling electronics.


Assuntos
Lasers , Microfluídica , Propriedades de Superfície
4.
Langmuir ; 37(23): 6947-6952, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34060840

RESUMO

Aeration is a mass transfer process, in which gas is dispersed into a liquid by utilizing air inflation or agitation. Typically, a microporous device is often used for aeration. Increasing the gas flow rate and decreasing the pore size reduce the bubble size, but the surface wettability of the gas/solid interface also has a significant impact on the bubble size, which is rarely studied. In this study, a superhydrophilic/superhydrophobic Janus aluminum foil (JAF) is fabricated by laser microstructuring and low surface energy modification. The gas-repelling superhydrophilic surface not only facilitates ultrafine bubble generation but also allows the bubbles to detach from the aerator surface quickly, while the superhydrophobic surface prevents water from infiltrating into the aeration chamber and reduces the mass transfer resistance. The micropores with different diameters are obtained by adjusting the laser processing parameters. The pore prepared by the laser is uniform, consequently leading to the uniform bubble size. When the pore diameter is set to 30 µm, the diameter of bubbles released from the superhydrophilic surface of the JAF is only 0.326 mm, and the gas dissolution rate is about six times that of the double-sided superhydrophobic aluminum foil. This simple, low-cost, and controllable method of the laser processing JAF has broad applications in wastewater treatment, energy production, and aquaculture.

5.
Front Chem ; 8: 529, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32671020

RESUMO

The role of ethanol (C2H5OH) in pitting corrosion behavior of AISI 316L austenitic stainless steel was investigated in aqueous ethanolic solution with chloride. The pitting susceptibility and surface morphology of 316L in a series of ethanol-containing solutions were examined using X-ray photoelectron spectroscopy (XPS), optical microscopy with 3D stitching, immersion tests, and potentiodynamic polarization measurements. Results demonstrated that the ethanol concentration impacted little on the passive film stability while it dramatically influenced the pitting corrosion susceptibility. Corrosion rate of 316L after immersion tests first increased and then decreased as the concentration of ethanol increased from 0 to 10 M in ferric chloride solution. This, however, did not correspond to the breakdown potential which directly decreased from 489 to 249 mV as the water concentration decreased in ethanolic NaCl solutions. The pits density after both immersion and electrochemical tests showed that the initiation of pitting in ethanolic solution tended to occur at multiple points at the same time. The synergy effect on pitting behavior of hydrolysis enhancement and solubility reduction of metal cations due to the introduction of ethanol has also been discussed.

6.
Materials (Basel) ; 12(5)2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30836638

RESUMO

The influence of surface roughness on the pitting corrosion behaviour of 2205 duplex stainless steel (DSS) in a chloride-containing environment was investigated using electrochemical noise (EN) techniques and morphology observation. A rougher surface condition increased the frequency of pit initiation because of the increase in more occluded pit sites. Rough surface finish also accelerated pit growth by increasing the actual dissolution rate in the pit. Metastable pits on rougher surfaces had longer lifetimes and grew to larger sizes, as their inner chemical environment was more easily maintained. However back-scatter images showed that pitting initiates on DSS 2205 regardless of the roughness condition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...