Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 10(19): 9153-9163, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29725675

RESUMO

Large metallic nanoparticles with sizes comparable to the wavelength of light are expected to support high-order plasmon modes exhibiting resonances in the visible to near infrared spectral range. However, the radiation behavior of high-order plasmon modes, including scattering spectra and radiation patterns, remains unexplored. Here, we report on the first observation and characterization of the high-order plasmon modes excited in large gold nanospheres by using the surface plasmon polaritons generated on the surface of a thin gold film. The polarization-dependent scattering spectra were measured by inserting a polarization analyzer in the collection channel and the physical origins of the scattering peaks observed in the scattering spectra were clearly identified. More interestingly, the radiation of electric quadrupoles and octupoles was resolved in both frequency and spatial domains. In addition, the angular dependences of the radiation intensity for all plasmon modes were extracted by fitting the polarization-dependent scattering spectra with multiple Lorentz line shapes. A significant enhancement of the electric field was found in the gap plasmon modes and it was employed to generate hot-electron intraband luminescence. Our findings pave the way for exploiting the high-order plasmon modes of large metallic nanoparticles in the manipulation of light radiation and light-matter interaction.

2.
Opt Express ; 23(22): 29231-44, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26561193

RESUMO

ZnO nanorods (NRs) self-organized into flowers were synthesized at different temperatures ranging from 100°C to 180°C by using the hydrothermal method. The existence of Zn interstitials (Zn(i)) was confirmed by X-ray photoelectron spectroscopy and a larger amount of Zn(i) was found in the ZnO NRs prepared at higher temperatures. A redshift of the emission peak of more than 15 nm was observed for the ZnO NRs under single photon excitation. The nonlinear optical properties of the flower-like ZnO NRs were characterized by using focused femtosecond laser light and strong three-photon-induced luminescence was observed at an excitation wavelength of ~750 nm. More interestingly, a large redshift of the emission peak was observed with increasing excitation intensity, resulting in efficient blue emission with a narrow bandwidth of ~30 nm. It was confirmed that the large redshift originates from the heating of the ZnO NRs to a temperature of more than 800°C and the closely packed ZnO NRs in the flowers play a crucial role in heat accumulation. The stable and efficient three-photon-induced blue emission from such ZnO NRs may find potential applications in the fields of optical display, high-temperature sensors and light therapy of tumors.

3.
Opt Express ; 22(23): 28086-99, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25402049

RESUMO

Periodic surface structures with periods as small as about one-tenth of the irradiating femtosecond (fs) laser light wavelength were created on the surface of a titanium (Ti) foil by exploiting laser-induced oxidation and third harmonic generation (THG). They were achieved by using 100-fs laser pulses with a repetition rate of 1 kHz and a wavelength ranging from 1.4 to 2.2 µm. It was revealed that an extremely thin TixOy layer was formed on the surface of the Ti foil after irradiating fs laser light with a fluence smaller than the ablation threshold of Ti, leading to a significant enhancement in THG which may exceed the ablation threshold of TixOy. As compared with Ti, the maximum efficacy factor for TixOy appears at a larger normalized wavevector in the direction perpendicular to the polarization of the fs laser light. As a result, the THG-dominated laser ablation of TixOy induces 100-nm periodic structures parallel to the polarization of the fs laser light. The depth of the periodic structures was found to be ~10 nm by atomic force microscopy and the formation of the thin TixOy layer was verified by energy dispersive X-ray spectroscopy.


Assuntos
Lasers , Microscopia de Força Atômica/instrumentação , Espectrometria por Raios X/instrumentação , Titânio/química , Desenho de Equipamento , Propriedades de Superfície
4.
Opt Lett ; 39(12): 3555-8, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24978535

RESUMO

We report on the efficient blue light emission from In0.16Ga0.84N/GaN multiple quantum wells excited by femtosecond laser pulses with long wavelengths ranging from 1.24 to 2.48 µm. It is found that the trap states in GaN barrier layers lead to an efficient cascade multiphoton absorption in which the carriers are generated through simultaneous absorption of n (n=1 and 2) photons to the trap states, followed by simultaneous absorption of m (m=3, 4, and 5) photons to the conduction band. The dependence of the upconversion luminescence on excitation intensity exhibits a slope between n and n+m, which is in good agreement with the prediction based on the rate equation model.

5.
Appl Opt ; 53(2): 189-94, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24514048

RESUMO

We investigated the second and third harmonic generation (SHG and THG) in ZnO nanorods (NRs) by using a femtosecond laser (optical parametric amplifier with tunable wavelengths) with a long excitation wavelength of 1350 nm and a low repetition rate of 1 kHz. The damage threshold for ZnO NRs in this case was sufficiently large, enabling us to observe the competition between SHG and THG. The transition from red to blue emission and the mixing of red and blue light with different ratios were successfully demonstrated by simply varying excitation intensity, implying the potential applications of ZnO NRs in all-optical display.

6.
Opt Express ; 21(4): 4439-46, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23481977

RESUMO

The femtosecond laser ablation of silicon surface near the ablation threshold was investigated and the preferential ablation along different directions was observed in different stages. It was found that the ripples formed in the initial stage facilitate the ablation along the direction perpendicular to the ripples, leading to the formation of an elliptical ablation area. With increasing length and depth of the ripples, however, nanohole arrays formed in the ripples will modify the distribution of electric field which benefits the ablation along the direction parallel to the ripples. Consequently, the ablation area is gradually changed to a circular one after irradiating sufficient number of pulses.


Assuntos
Lasers , Nanopartículas/química , Nanopartículas/ultraestrutura , Silício/química , Silício/efeitos da radiação , Nanopartículas/efeitos da radiação , Doses de Radiação , Propriedades de Superfície/efeitos da radiação
7.
Nanotechnology ; 24(7): 075201, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23358516

RESUMO

We investigate systematically the competition between the second harmonic generation (SHG) and two-photon-induced luminescence (TPL) that are simultaneously present in Au nanoparticles excited by using a femtosecond (fs) laser. For a large-sized (length ~ 800 nm, diameter ~ 200 nm) Au nanorod, the SHG appears to be much stronger than the TPL. However, the situation is completely reversed when the Au nanorod is fragmented into many Au nanoparticles by the fs laser. In sharp contrast, only the TPL is observed in small-sized (length ~ 40 nm, diameter ~ 10 nm) Au nanorods. When a number of the small-sized Au nanorods are optically trapped and fused into a large-sized Au cluster by focused fs laser light, the strong TPL is reduced while the weak SHG increases significantly. In both cases, the morphology change is characterized by scanning electron microscope. In addition, the modification of the scattering and absorption cross sections due to the morphology change is calculated by using the discrete dipole approximation method. It is revealed that SHG is dominant in the case when the scattering is much larger than the absorption. When the absorption becomes comparable to or larger than the scattering, the TPL increases dramatically and will eventually become dominant. Since the relative strengths of scattering and absorption depend strongly on the size of the Au nanoparticles, the competition between SHG and TPL is found to be size dependent.

8.
Opt Express ; 20(10): 10963-70, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22565719

RESUMO

We investigate the simultaneous trapping and melting of a large number of gold (Au) nanorods by using a single focused laser beam at 800 nm which is in resonance with the longitudinal surface plasmon resonance of Au nanorods. The trapping and melting processes were monitored by the two-photon luminescence of Au nanorods. A multi-ring-shaped pattern was observed in the steady state of the trapping process. In addition, optical trapping of clusters of Au nanorods in the orbits circling the focus was observed. The morphology of the structure after trapping and melting of Au nanorods was characterized by scanning electron microscope. It was revealed that Au nanorods were selectively melted in the trapping region. While Au nanorods distributed in the dark rings were completely melted, those located in the bright rings remain unmelted. The multi-ring-shaped pattern formed by the interference between the incident light and the scattered light plays an important role in the trapping and melting of Au nanorods.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Óptica e Fotônica , Desenho de Equipamento , Temperatura Alta , Interferometria/métodos , Lasers , Luz , Microscopia Eletrônica de Varredura/métodos , Nanotubos/química , Fótons , Espalhamento de Radiação , Ressonância de Plasmônio de Superfície , Temperatura
9.
Opt Express ; 20(9): 9616-23, 2012 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-22535053

RESUMO

We proposed a method to assemble microspheres into a three-dimensional crystal by utilizing the giant nonequilibrium depletion force produced by nanoparticles. Such assembling was demonstrated in a colloid formed by suitably mixing silica microspheres and magnetic nanoparticles. The giant nonequilibrium depletion force was generated by quickly driving magnetic nanoparticles out of the focusing region of a laser light through both optical force and thermophoresis. The thermophoretic binding of silica beads is so tight that a colloidal photonic crystal can be achieved after complete evaporation of solvent. This technique could be employed for fabrication of colloidal photonic crystals and molecular sieves.


Assuntos
Cristalização/métodos , Lasers , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestrutura , Dióxido de Silício/química , Nanopartículas de Magnetita/efeitos da radiação , Teste de Materiais , Dióxido de Silício/efeitos da radiação , Estresse Mecânico
10.
Opt Lett ; 37(6): 1106-8, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22446240

RESUMO

We report on the formation of one- and two-dimensional (1D and 2D) nanohole arrays on the surface of a silicon wafer by scanning with a femtosecond laser with appropriate power and speed. The underlying physical mechanism is revealed by numerical simulation based on the finite-difference time-domain technique. It is found that the length and depth of the initially formed gratings (or ripples) plays a crucial role in the generation of 1D or 2D nanohole arrays. The silicon surface decorated with such nanohole arrays can exhibit vivid structural colors through efficiently diffracting white light.

11.
ACS Nano ; 6(2): 1268-77, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22264116

RESUMO

Gold (Au) nanoparticles, particularly nanorods, are actively employed as imaging probes because of their special nonblinking and nonbleaching absorption, scattering, and emitting properties that arise from the excitation of surface plasmons. Herein, we report a novel sensing method that detects feature orientation at the nanoscale via the defocused imaging of individual Au nanorods (AuNRs) with an ordinary wide-field optical microscope. By simultaneously recording defocused images and two-photon luminescence intensities for a large number of individual AuNRs, we correlate their defocused images with their three-dimensional spatial orientations. The spatial orientation of many individual AuNRs can be monitored in situ and in real-time within a single frame, enabling its use as a technique for high-throughput sensing. The probe size can be as small as several nanometers, which is highly desirable for minimization of any potential interference from the probe itself. Furthermore, the sensing property is insensitive to the excitation polarization and the distribution of the probe aspect ratio, which allows AuNRs of any length within a proper regime to be used as orientation sensors without changing the laser frequency and polarization. These unique features make the orientation probes proposed here outstanding candidates for optical imaging and sensing in materials science and biological applications.


Assuntos
Ouro/química , Microscopia/métodos , Nanotubos/química , Medições Luminescentes , Fenômenos Ópticos , Fótons
12.
Opt Express ; 20(2): 905-11, 2012 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-22274437

RESUMO

The high spatial frequency periodic structures induced on metal surface by femtosecond laser pulses was investigated experimentally and numerically. It is suggested that the redistribution of the electric field on metal surface caused by the initially formed low spatial frequency periodic structures plays a crucial role in the creation of high spatial frequency periodic structures. The field intensity which is initially localized in the grooves becomes concentrated on the ridges in between the grooves when the depth of the grooves exceeds a critical value, leading to the ablation of the ridges in between the grooves and the formation of high spatial frequency periodic structures. The proposed formation process is supported by both the numerical simulations based on the finite-difference time-domain technique and the experimental results obtained on some metals such as stainless steel and nickel.


Assuntos
Lasers , Manufaturas , Níquel/química , Aço Inoxidável/química , Simulação por Computador , Análise de Elementos Finitos , Microscopia Eletrônica de Varredura , Análise Numérica Assistida por Computador
13.
Opt Express ; 18(1): 79-86, 2010 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-20173825

RESUMO

Based on the excitation of surface plasmon polaritons (SPPs), we analytically and numerically investigate the transmission response in metal-dielectric-metal (MDM) plasmonic waveguides with a side coupled nanocavity (SCNC). By filling the nanocavity with a Kerr nonlinear medium, the position of the resonant dip in the transmission spectrum can be tuned by the incident light intensity. The oscillation of a Fabry-Perot nanocavity formed by incorporating a finite length of the same Kerr nonlinear media into the MDM waveguide acts as a background for the transmission response of the system and induces a sharp and asymmetric response line shape. As a result, the wavelength shift required for the plasmonic device to be switched from the maximum to the minimum transmission can be reduced by half in a structure less than 400 nm long. Such an effect may be potentially applied to constructing SPP-based all-optical switching with low power threshold at nanoscale.


Assuntos
Metais/química , Dispositivos Ópticos , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Transdutores , Desenho Assistido por Computador , Desenho de Equipamento , Dinâmica não Linear , Reprodutibilidade dos Testes
14.
Opt Lett ; 35(2): 97-9, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20081933

RESUMO

We demonstrate the switching of light in the near-infrared region (1.55 microm) through the manipulation of magnetic nanoparticles in a magnetic fluid by using another light in the visible region (0.532 microm). The formation of a photonic gap is found in the magnetic fluid when a laser light or a magnetic field is applied. A shift of the photonic gap to longer wavelengths is observed with increasing laser power or magnetic field strength.

15.
Opt Express ; 17(6): 4903-12, 2009 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-19293922

RESUMO

We investigate discrepancy and similarity in dispersion relations between transverse-electric (TE) and transverse-magnetic (TM) polarizations in rectangular, square and triangular two-dimensional photonic crystals. It is found that the square lattice is the most appropriate candidate to realize polarization-independent, i.e. absolute self-collimation (ASC) in the first photonic band since it possesses not only a relatively broad angular range for self-collimation but also a small difference in dispersion relations between TE and TM modes. By tailoring the shape of air voids in the square-lattice-based structure, the electric-field vector can be rotated to reduce the discrepancy between TE and TM modes whereby the frequency bandwidth of ASC can be enlarged to approximately 4.8%. The ASC phenomenon is demonstrated by numerical experiments based on a finite-difference time-domain (FDTD) technique with negligible propagation losses.

16.
Opt Lett ; 33(22): 2617-9, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19015686

RESUMO

We investigate the dynamics of optical matter creation and annihilation in a colloidal liquid that was employed to construct an all-optical switch. It is revealed that the switching-on process can be characterized by the Fermi-Dirac distribution function, while the switching-off process can be described by a steady state followed by a single exponential decay. The phase transition times exhibit a strong dependence on trapping power. With an increasing trapping power, while the switching-on time decreases rapidly, the switch-off time increases significantly, indicating the effects of optical binding and van der Waals force on the lifetime of the optical matter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...