Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38585769

RESUMO

Characterizing the genetic mechanisms underlying Alzheimer's disease (AD) dementia is crucial for developing new therapeutics. Proteome-wide association study (PWAS) integrating proteomics data with genome-wide association study (GWAS) summary data was shown as a powerful tool for detecting risk genes. The identified PWAS risk genes can be interpretated as having genetic effects mediated through the genetically regulated protein abundances. Existing PWAS analyses of AD often rely on the availability of individual-level proteomics and genetics data of a reference cohort. Leveraging summary-level protein quantitative trait loci (pQTL) reference data of multiple relevant tissues is expected to improve PWAS findings for studying AD. Here, we applied our recently developed OTTERS tool to conduct PWAS of AD dementia, by leveraging summary-level pQTL data of brain, cerebrospinal fluid (CSF), and plasma tissues, and multiple statistical methods. For each target protein, imputation models of the protein abundance with genetic predictors were trained from summary-level pQTL data, estimating a set of pQTL weights for considered genetic predictors. PWAS p-values were obtained by integrating GWAS summary data of AD dementia with estimated pQTL weights. PWAS p-values from multiple statistical methods were combined by the aggregated Cauchy association test to yield one omnibus PWAS p-value for the target protein. We identified significant PWAS risk genes through omnibus PWAS p-values and analyzed their protein-protein interactions using STRING. Their potential causal effects were assessed by the probabilistic Mendelian randomization (PMR-Egger). As a result, we identified a total of 23 significant PWAS risk genes for AD dementia in brain, CSF, and plasma tissues, including 7 novel findings. We showed that 15 of these risk genes were interconnected within a protein-protein interaction network involving the well-known AD risk gene of APOE and 5 novel findings, and enriched in immune functions and lipids pathways including positive regulation of immune system process, positive regulation of macrophage proliferation, humoral immune response, and high-density lipoprotein particle clearance. Existing biological evidence was found to relate our novel findings with AD. We validated the mediated causal effects of 14 risk genes (60.8%). In conclusion, we identified both known and novel PWAS risk genes, providing novel insights into the genetic mechanisms in brain, CSF, and plasma tissues, and targeted therapeutics development of AD dementia. Our study also demonstrated the effectiveness of integrating public available summary-level pQTL data with GWAS summary data for mapping risk genes of complex human diseases.

2.
Nat Commun ; 14(1): 1271, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882394

RESUMO

Most existing TWAS tools require individual-level eQTL reference data and thus are not applicable to summary-level reference eQTL datasets. The development of TWAS methods that can harness summary-level reference data is valuable to enable TWAS in broader settings and enhance power due to increased reference sample size. Thus, we develop a TWAS framework called OTTERS (Omnibus Transcriptome Test using Expression Reference Summary data) that adapts multiple polygenic risk score (PRS) methods to estimate eQTL weights from summary-level eQTL reference data and conducts an omnibus TWAS. We show that OTTERS is a practical and powerful TWAS tool by both simulations and application studies.


Assuntos
Lontras , Animais , Herança Multifatorial , Fatores de Risco , Tamanho da Amostra , Transcriptoma
3.
bioRxiv ; 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38168391

RESUMO

Research on cell-cell communication (CCC) is crucial for understanding biology and diseases. Many existing CCC inference tools neglect potential confounders, such as batch and demographic variables, when analyzing multi-sample, multi-condition scRNA-seq datasets. To address this significant gap, we introduce STACCato, a Supervised Tensor Analysis tool for studying Cell-cell Communication, that identifies CCC events and estimates the effects of biological conditions (e.g., disease status, tissue types) on such events, while adjusting for potential confounders. Application of STACCato to both simulated data and real scRNA-seq data of lupus and autism studies demonstrate that incorporating sample-level variables into CCC inference consistently provides more accurate estimations of disease effects and cell type activity patterns than existing methods that ignore sample-level variables. A computational tool implementing the STACCato framework is available on GitHub.

4.
PLoS Comput Biol ; 17(5): e1009029, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34003861

RESUMO

Single-cell RNA sequencing technology provides an opportunity to study gene expression at single-cell resolution. However, prevalent dropout events result in high data sparsity and noise that may obscure downstream analyses in single-cell transcriptomic studies. We propose a new method, G2S3, that imputes dropouts by borrowing information from adjacent genes in a sparse gene graph learned from gene expression profiles across cells. We applied G2S3 and ten existing imputation methods to eight single-cell transcriptomic datasets and compared their performance. Our results demonstrated that G2S3 has superior overall performance in recovering gene expression, identifying cell subtypes, reconstructing cell trajectories, identifying differentially expressed genes, and recovering gene regulatory and correlation relationships. Moreover, G2S3 is computationally efficient for imputation in large-scale single-cell transcriptomic datasets.


Assuntos
Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Biologia Computacional/métodos , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Humanos
5.
JCI Insight ; 6(2)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33290275

RESUMO

The pathogenesis of chronic obstructive pulmonary disease (COPD) involves aberrant responses to cellular stress caused by chronic cigarette smoke (CS) exposure. However, not all smokers develop COPD and the critical mechanisms that regulate cellular stress responses to increase COPD susceptibility are not understood. Because microRNAs are well-known regulators of cellular stress responses, we evaluated microRNA expression arrays performed on distal parenchymal lung tissue samples from 172 subjects with and without COPD. We identified miR-24-3p as the microRNA that best correlated with radiographic emphysema and validated this finding in multiple cohorts. In a CS exposure mouse model, inhibition of miR-24-3p increased susceptibility to apoptosis, including alveolar type II epithelial cell apoptosis, and emphysema severity. In lung epithelial cells, miR-24-3p suppressed apoptosis through the BH3-only protein BIM and suppressed homology-directed DNA repair and the DNA repair protein BRCA1. Finally, we found BIM and BRCA1 were increased in COPD lung tissue, and BIM and BRCA1 expression inversely correlated with miR-24-3p. We concluded that miR-24-3p, a regulator of the cellular response to DNA damage, is decreased in COPD, and decreased miR-24-3p increases susceptibility to emphysema through increased BIM and apoptosis.


Assuntos
Apoptose/genética , Dano ao DNA/genética , MicroRNAs/genética , Doença Pulmonar Obstrutiva Crônica/genética , Idoso , Animais , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína 11 Semelhante a Bcl-2/genética , Proteína 11 Semelhante a Bcl-2/metabolismo , Linhagem Celular , Fumar Cigarros/efeitos adversos , Estudos de Coortes , Reparo do DNA , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Humanos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos AKR , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma
6.
Int Immunopharmacol ; 90: 107167, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33223469

RESUMO

The effect of immunosuppression blockade therapies depends on the infiltration of effector T cells and other immune cells in tumor. However, it is unclear how molecular pathways regulate the infiltration of immune cells, as well as how interactions between tumor-infiltrating immune cells and T cell activation affect breast cancer patient survival. CIBERSORT was used to estimate the relative abundance of 22 immune cell types. The association between mRNAs and immune cell abundance were assessed by Spearman correlation analysis. Enriched pathways were identified using MetaCore pathway analysis. The interactions between the T cell activation status and the abundance of tumor-infiltrating immune cells were evaluated using Kaplan-Meier survival and multivariate Cox regression models in a publicly available dataset of 1081 breast cancer patients. The role of tumor-infiltrating B cells in antitumor immunity, immune response of T cell subsets, and breakdown of CD4+ T cell peripheral tolerance were positively associated with M1 macrophage and CD8+ T cell but negatively associated with M2 macrophage. Abundant plasma cell was associated with prolonged survival (HR = 0.46, 95% CI: 0.32-0.67), and abundant M2 macrophage was associated with shortened survival (HR = 1.78, 95% CI: 1.23-2.60). There exists a significant interaction between the T cell activation status and the resting DC abundance level (p = 0.025). Molecular pathways associated with tumor-infiltrating immune cells provide future directions for developing cancer immunotherapies to control immune cell infiltration, and further influence T cell activation and patient survival in breast cancer.


Assuntos
Neoplasias da Mama/imunologia , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Mama/imunologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Bases de Dados de Compostos Químicos , Feminino , Humanos , Estimativa de Kaplan-Meier , Macrófagos/imunologia , Pessoa de Meia-Idade , Prognóstico
7.
Cancers (Basel) ; 12(8)2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32785169

RESUMO

Effector CD8+ T cell activation and its cytotoxic function are positively correlated with improved survival in breast cancer. tRNA-derived fragments (tRFs) have recently been found to be involved in gene regulation in cancer progression. However, it is unclear how interactions between expression of tRFs and T cell activation affect breast cancer patient survival. We used Kaplan-Meier survival and multivariate Cox regression models to evaluate the effect of interactions between expression of tRFs and T cell activation on survival in 1081 breast cancer patients. Spearman correlation analysis and weighted gene co-expression network analysis were conducted to identify genes and pathways that were associated with tRFs. tRFdb-5024a, 5P_tRNA-Leu-CAA-4-1, and ts-49 were positively associated with overall survival, while ts-34 and ts-58 were negatively associated with overall survival. Significant interactions were detected between T cell activation and ts-34 and ts-49. In the T cell exhaustion group, patients with a low level of ts-34 or a high level of ts-49 showed improved survival. In contrast, there was no significant difference in the activation group. Breast cancer related pathways were identified for the five tRFs. In conclusion, the identified five tRFs associated with overall survival may serve as therapeutic targets and improve immunotherapy in breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...