Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Cent Sci ; 9(6): 1229-1240, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37396855

RESUMO

No current methods can selectively elicit an antibody response to a specific conformational epitope in a whole antigen in vivo. Here, we incorporated Nε-acryloyl-l-lysine (AcrK) or Nε-crotonyl-l-lysine (Kcr) with cross-linking activities into the specific epitopes of antigens and immunized mice to generate antibodies that can covalently cross-link with the antigens. By taking advantage of antibody clonal selection and evolution in vivo, an orthogonal antibody-antigen cross-linking reaction can be generated. With this mechanism, we developed a new approach for facile elicitation of antibodies binding to specific epitopes of the antigen in vivo. Antibody responses were directed and enriched to the target epitopes on protein antigens or peptide-KLH conjugates after mouse immunization with the AcrK or Kcr-incorporated immunogens. The effect is so prominent that the majority of selected hits bind to the target epitope. Furthermore, the epitope-specific antibodies effectively block IL-1ß from activating its receptor, indicating its potential for the development of protein subunit vaccines.

2.
Nat Prod Res ; 35(16): 2647-2654, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34414849

RESUMO

During the systematic screening of bioactive compounds from our marine natural product library, crude extract of the marine-derived fungus strain Aspergillus fumigatus MF029 exhibited moderate bioactivities against Bacillus subtilis, Staphylococcus aureus, methicillin-resistant S. aureus, and Mycobacterium bovis bacillus Calmette-Guérin (BCG). Further chemical investigation resulted in the identification of two new compounds, chaetominine A (1) and sphingofungin I (2), together with four known compounds, emodin (3), chaetominine (4), sphingofungin D (5) and trypacidin (6). Trypacidin displayed potential antitubercular activity with MIC value of 1.25 µg/mL.


Assuntos
Antituberculosos , Aspergillus fumigatus , Produtos Biológicos/farmacologia , Antituberculosos/isolamento & purificação , Antituberculosos/farmacologia , Organismos Aquáticos , Aspergillus fumigatus/química , Produtos Biológicos/isolamento & purificação , Testes de Sensibilidade Microbiana
3.
Cell Chem Biol ; 27(12): 1532-1543.e6, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33186541

RESUMO

Pioneering microbial genomic surveys have revealed numerous untapped biosynthetic gene clusters, unveiling the great potential of new natural products. Here, using a combination of genome mining, mutasynthesis, and activity screening in an infection model comprising Caenorhabditis elegans and Pseudomonas aeruginosa, we identified candidate virulence-blocking amychelin siderophore compounds from actinomycetes. Subsequently, we developed unreported analogs of these virulence-blocking siderophores with improved potency by exploiting an Amycolatopsis methanolica strain 239T chorismate to salicylate a biosynthetic subpathway for mutasynthesis. This allowed us to generate the fluorinated amychelin, fluoroamychelin I, which rescued C. elegans from P. aeruginosa-mediated killing with an EC50 value of 1.4 µM, outperforming traditional antibiotics including ceftazidime and meropenem. In general, this paper describes an efficient platform for the identification and production of classes of anti-microbial compounds with potential unique modes of action.


Assuntos
Mineração de Dados , Genômica , Halogenação , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Sideróforos/química , Sideróforos/farmacologia , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Caenorhabditis elegans/genética , Ceftazidima/farmacologia , Avaliação Pré-Clínica de Medicamentos , Meropeném/farmacologia
4.
Synth Syst Biotechnol ; 1(3): 169-186, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29062941

RESUMO

The complete genome of methanol-utilizing Amycolatopsis methanolica strain 239T was generated, revealing a single 7,237,391 nucleotide circular chromosome with 7074 annotated protein-coding sequences (CDSs). Comparative analyses against the complete genome sequences of Amycolatopsis japonica strain MG417-CF17T, Amycolatopsis mediterranei strain U32 and Amycolatopsis orientalis strain HCCB10007 revealed a broad spectrum of genomic structures, including various genome sizes, core/quasi-core/non-core configurations and different kinds of episomes. Although polyketide synthase gene clusters were absent from the A. methanolica genome, 12 gene clusters related to the biosynthesis of other specialized (secondary) metabolites were identified. Complete pathways attributable to the facultative methylotrophic physiology of A. methanolica strain 239T, including both the mdo/mscR encoded methanol oxidation and the hps/hpi encoded formaldehyde assimilation via the ribulose monophosphate cycle, were identified together with evidence that the latter might be the result of horizontal gene transfer. Phylogenetic analyses based on 16S rDNA or orthologues of AMETH_3452, a novel actinobacterial class-specific conserved gene against 62 or 18 Amycolatopsis type strains, respectively, revealed three major phyletic lineages, namely the mesophilic or moderately thermophilic A. orientalis subclade (AOS), the mesophilic Amycolatopsis taiwanensis subclade (ATS) and the thermophilic A. methanolica subclade (AMS). The distinct growth temperatures of members of the subclades correlated with corresponding genetic variations in their encoded compatible solutes. This study shows the value of integrating conventional taxonomic with whole genome sequence data.

5.
Appl Microbiol Biotechnol ; 99(14): 5895-905, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25586582

RESUMO

Siderophores are important for the growth of bacteria or the applications in treatment of iron overload-associated diseases due to the iron-chelating property. Salicylate synthase played a key role in the biosynthesis of some NRPS-derived siderophores by the providing of an iron coordination moiety as the initial building block. A new salicylate synthase, namely AmS, was identified in the biosynthesis pathway of siderophore amychelin in Amycolatopsis methanolica 239(T), since it shunt chorismate, an integrant precursor, from primary to secondary metabolite flow. The amino acid sequence alignment and phylogenetic analysis showed that AmS grouped into a new cluster. In vitro assays of AmS revealed its wide temperature tolerance ranged from 0 to 40 °C and narrow pH tolerant ranged from 7.0 to 9.0. AmS was resistant to organic solvents and non-ionic detergents. Moreover, AmS converted chorismate to salicylate with K m of 129.05 µM, k cat of 2.20 min(-1) at optimal conditions, indicating its low substrate specificity and comparable velocity to reported counterparts (Irp9 and MbtI). These properties of AmS may improve the iron-seizing ability of A. methanolica to compete with its neighbors growing in natural environments. Most importantly, serine and cysteine residues were found to be important for the catalytic activity of AmS. This study presented AmS as a new cluster of salicylate synthase and the reaction mechanism and potential applications of salicylate synthase were highlighted as well.


Assuntos
Actinobacteria/enzimologia , Actinobacteria/metabolismo , Liases/genética , Liases/metabolismo , Sideróforos/biossíntese , Biotransformação , Ácido Corísmico/metabolismo , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Liases/química , Dados de Sequência Molecular , Filogenia , Salicilatos/metabolismo , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...