Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 17(1): 170, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32471455

RESUMO

BACKGROUND: The autoimmune disease rheumatoid arthritis (RA) affects approximately 1% of the global population. RA is characterized with chronic joint inflammation and often associated with chronic pain. The imbalance of pro-inflammatory and anti-inflammatory macrophages is a feature of RA progression. Glial cells affecting neuronal sensitivity at both peripheral and central levels may also be important for RA progression and associated pain. Genetic variants in the T cell death-associated gene 8 (TDAG8) locus are found to associate with spondyloarthritis. TDAG8 was also found involved in RA disease progression and associated hyperalgesia in the RA mouse model. However, its modulation in RA remains unclear. METHODS: To address this question, we intra-articularly injected complete Freund's adjuvant (CFA) into TDAG8+/+, TDAG8-/- or wild-type mice, followed by pain behavioral tests. Joints and dorsal root ganglia were taken, sectioned, and stained with antibodies to observe the number of immune cells, macrophages, and satellite glial cells (SGCs). For compound treatments, compounds were intraperitoneally or orally administered weekly for 9 consecutive weeks after CFA injection. RESULTS: We demonstrated that TDAG8 deletion slightly reduced RA pain in the early phase but dramatically attenuated RA progression and pain in the chronic phase (> 7 weeks). TDAG8 deletion inhibited an increase in SGC number and inhibition of SGC function attenuated chronic phase of RA pain, so TDAG8 could regulate SGC number to control chronic pain. TDAG8 deletion also reduced M1 pro-inflammatory macrophage number at 12 weeks, contributing to the attenuation of chronic RA pain. Such results were further confirmed by using salicylanilide derivatives, CCL-2d or LCC-09, to suppress TDAG8 expression and function. CONCLUSIONS: This study demonstrates that TDAG8 deletion reduced SGC and M1 macrophage number to relieve RA disease severity and associated chronic pain. M1 macrophages are critical for the development and maintenance of RA disease and pain, but glial activation is also required for the chronic phase of RA pain.


Assuntos
Artrite Reumatoide/metabolismo , Macrófagos/imunologia , Neuroglia/imunologia , Animais , Artrite Experimental/imunologia , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Dor Crônica/imunologia , Dor Crônica/metabolismo , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Camundongos , Receptores Acoplados a Proteínas G/metabolismo
2.
Mol Biol Rep ; 47(5): 3423-3437, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32277445

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of synovial joints and often associated with chronic pain. Chronic joint inflammation is attributed to severe proliferation of synoviocytes and resident macrophages and infiltration of immune cells. These cells secrete pro-inflammatory cytokines such as tumor necrosis factor α (TNF-α), interleukin 6 (IL-6) and IL-17 to overcome actions of anti-inflammatory cytokines, thereby maintaining chronic inflammation and pain. The imbalance between pro-inflammatory cytokines (produced by M1 macrophages) and anti-inflammatory cytokines (produced by M2 macrophages) is a feature of RA progression, but the switch time of M1/M2 polarization and which receptor regulates the switch remain unsolved. Here we used an established RA mouse model to demonstrate that TNF-α expression was responsible for the initial acute stage of inflammation and pain (1-4 weeks), IL-17 expression the transition stage (4-12 weeks), and IL-6 expression the later maintenance stage (> 12 weeks). The switch time of M1/M2 polarization occurred at 4-8 weeks. We also identified a potential compound, anthra[2,1-c][1,2,5] thiadiazole-6,11-dione (NSC745885), that specifically inhibited T-cell death-associated gene 8 (TDAG8) function and expression. NSC745885 decreased joint inflammation and destruction and attenuated pain by reducing cytokine production and regulating the M1/M2 polarization switch. TDAG8 may participate in regulating the M1/M2 polarization and temporal expression of distinct cytokines to control RA progression.


Assuntos
Artrite Reumatoide/imunologia , Citocinas/genética , Macrófagos/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Células Cultivadas , Citocinas/metabolismo , Expressão Gênica/genética , Inflamação/metabolismo , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Dor/genética , Dor/metabolismo , Sinoviócitos/metabolismo , Transcriptoma/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
3.
Adv Exp Med Biol ; 1099: 49-64, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30306514

RESUMO

Rheumatoid arthritis (RA), characterized by chronic inflammation of synovial joints, is often associated with ongoing pain and increased pain sensitivity. Chronic pain that comes with RA turns independent, essentially becoming its own disease. It could partly explain that a significant number (50%) of RA patients fail to respond to current RA therapies that focus mainly on suppression of joint inflammation. The acute phase of pain seems to associate with joint inflammation in early RA. In established RA, the chronic phase of pain could be linked to inflammatory components of neuron-immune interactions and noninflammatory components. Accumulating evidence suggests that the initial inflammation and autoimmunity in RA (preclinical RA) begin outside of the joint and may originate at mucosal sites and alterations in the composition of microbiota located at mucosal sites could be essential for mucosal inflammation, triggering joint inflammation. Fibroblast-like synoviocytes in the inflamed joint respond to cytokines to release acidic components, lowering pH in synovial fluid. Extracellular proton binds to proton-sensing ion channels, and G-protein-coupled receptors in joint nociceptive fibers may contribute to sensory transduction and release of neurotransmitters, leading to pain and hyperalgesia. Activation of peripheral sensory neurons or nociceptors further modulates inflammation, resulting in neuroinflammation or neurogenic inflammation. Peripheral and central nerves work with non-neuronal cells (such as immune cells, glial cells) in concert to contribute to the chronic phase of RA-associated pain. This review will discuss actions of proton-sensing receptors on neurons or non-neuronal cells that modulate RA pathology and associated chronic pain, and it will be beneficial for the development of future therapeutic treatments.


Assuntos
Artrite Reumatoide/fisiopatologia , Canais Iônicos/fisiologia , Nociceptores/fisiologia , Dor/fisiopatologia , Receptores Acoplados a Proteínas G/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Hiperalgesia/fisiopatologia , Prótons , Líquido Sinovial/química
4.
Sci Rep ; 7: 41415, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28145512

RESUMO

Chronic pain, resulting from injury, arthritis, and cancer, is often accompanied by inflammation. High concentrations of protons found in inflamed tissues results in tissue acidosis, a major cause of pain and hyperalgesia. Acidosis signals may mediate a transition from acute to chronic hyperalgesia (hyperalgesic priming) via proton-sensing G-protein-coupled receptors (GPCRs). The expression of T-cell death-associated gene 8 (TDAG8), a proton-sensing GPCR, is increased during inflammatory hyperalgesia. Attenuating TDAG8 expression in the spinal cord inhibits bone cancer pain, but whether TDAG8 is involved in inflammatory hyperalgesia or hyperalgesic priming remains unclear. In this study, we used TDAG8-knockout or -knockdown to explore the role of TDAG8 in pain. Suppressed TDAG8 expression delayed the onset of inflammatory hyperalgesia and shortened hyperalgesic time in mice. In a dual acid-injection model (acid [pH 5.0] injected twice, 5 days apart), shRNA inhibition of TDAG8 shortened the duration of the second hyperalgesia. Similar results were found in TDAG8-deficient mice. The dual administration of TDAG8 agonist also confirmed that TDAG8 is involved in hyperalgsic priming. Accordingly, TDAG8 may mediate acidosis signals to initiate inflammatory hyperalgesia and establish hyperalgesic priming.


Assuntos
Hiperalgesia/metabolismo , Hiperalgesia/patologia , Inflamação/metabolismo , Inflamação/patologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Carragenina , AMP Cíclico/metabolismo , Adjuvante de Freund , Deleção de Genes , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Espaço Intracelular/metabolismo , Camundongos Endogâmicos ICR , RNA Interferente Pequeno/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
5.
PLoS One ; 10(5): e0125022, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25933021

RESUMO

Chronic inflammatory pain, when not effectively treated, is a costly health problem and has a harmful effect on all aspects of health-related quality of life. Previous studies suggested that in male Sprague Dawley rats, prostaglandin E2 (PGE2)-induced short-term hyperalgesia depends on protein kinase A (PKA) activity, whereas long-lasting hyperalgesia induced by PGE2 with carrageenan pre-injection, requires protein kinase Cε (PKCε). However, the mechanism underlying the kinase switch with short- to long-term hyperalgesia remains unclear. In this study, we used the inflammatory agents carrageenan or complete Freund's adjuvant (CFA) to induce long-term hyperalgesia, and examined PKA and PKCε dependence and switching time. Hyperalgesia induced by both agents depended on PKA/PKCε and Gs/Gi-proteins, and the switching time from PKA to PKCε and from Gs to Gi was about 3 to 4 h after inflammation induction. Among the single inflammatory mediators tested, PGE2 and 5-HT induced transient hyperalgesia, which depended on PKA and PKCε, respectively. Only acidic solution-induced hyperalgesia required Gs-PKA and Gi-PKCε, and the switch time for kinase dependency matched inflammatory hyperalgesia, in approximately 2 to 4 h. Thus, acidosis in inflamed tissues may be a decisive factor to regulate switching of PKA and PKCε dependence via proton-sensing G-protein-coupled receptors.


Assuntos
Acidose/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Hiperalgesia/metabolismo , Inflamação/metabolismo , Proteína Quinase C-épsilon/metabolismo , Animais , Carragenina , Adjuvante de Freund , Concentração de Íons de Hidrogênio , Hiperalgesia/etiologia , Inflamação/complicações , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...