Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(16): e36341, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39262948

RESUMO

In field hydraulic fracturing operation of shale gas development, the high pressure and large displacement liquid-particle two-phase fracturing fluid can be forced to change direction many times through high-pressure double-elbow, and be transported from the outlet pipeline of the fracturing pump to the main pipeline. The high-pressure double-elbow is prone to be affected by erosion wear and Fluid-Structure Interaction (FSI), resulting in perforation and fracture, posing a potential safety threat to field operation. In this study, we conducted the erosion wear experiments on 35CrMo steel used for high-pressure double-elbow in shale-gas fracturing. The erosion rates under different impact angles and flow velocities were obtained, and proposed a novel model of erosion prediction for high-pressure double-elbow. Then the numerical investigation was employed to conduct a comprehensive analysis of erosion wear, structural stress and deformation by the coupling of Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA). The effects of structural parameters such as connection straight pipe length, pipe inner diameter and fluid turning direction were discussed. The results indicate that with the increase of connection straight pipe length, the flow erosion decreases first then varies little, and the deformation gradually increases. Slight erosion wear but large structural stress and deformation in major inner diameter pipe. And the minimum degree of erosion and flow-induced deformation present with the fluid turning direction of double-elbow as 0°. The study can provide references for the design, installation and detection of high-pressure double-elbow and ensure safety in the process of shale gas fracturing.

2.
Fundam Res ; 3(3): 332-345, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-38933762

RESUMO

The rapid development of 5G, big data, and Internet of Things (IoT) technologies is urgently required for novel non-volatile memory devices with low power consumption, fast read/write speed, and high reliability, which are crucial for high-performance computing. Ferroelectric memory has undergone extensive investigation as a viable alternative for commercial applications since the post-Moore era. However, conventional perovskite-structure ferroelectrics (e.g., PbZr x Ti1- x O3) encounter severe limitations for high-density integration owing to the size effect of ferroelectricity and incompatibility with complementary metal-oxide-semiconductor technology. Since 2011, the ferroelectric field has been primarily focused on HfO2-based ferroelectric thin films owing to their exceptional scalability. Several reviews discussing the control of ferroelectricity and device applications exist. It is believed that a comprehensive understanding of mechanisms based on industrial requirements and concerns is necessary, such as the wake-up effect and fatigue mechanism. These mechanisms reflect the atomic structures of the materials as well as the device physics. Herein, a review focusing on phase stability and domain structure is presented. In addition, the recent progress in related ferroelectric memory devices and their challenges is briefly discussed.

3.
ACS Appl Mater Interfaces ; 14(45): 51459-51467, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36318591

RESUMO

The ferroelectric field-effect transistors (FeFETs) with HfO2-based ferroelectric layers in the gate stacks are emerging as one of the most promising candidates for the next-generation nonvolatile memory devices due to their scalability and compatibility with conventional Si technology. Moreover, owing to the high radiation hardness of the HfO2-based ferroelectric thin films, HfO2-based FeFETs have attracted great interest in the fields of radiation-hard (rad-hard) memory. However, the reliability of their memory states under irradiation, which represents the validity of the stored information, has not been investigated. Here, we focus on the impact of the total ionizing dose (TID) on erased and programmed states of HfO2-based FeFETs. The TID radiation (X-ray) characteristics of erased and programmed HfO2-based FeFETs are characterized using an on-site read operation. Both the erased and programmed states show robust stability under irradiation at a dose rate of 90 rad(Si)/s, and even at 230 rad(Si)/s, only the erased state shows a slight variation. The possible factors contributing to memory state degradation are discussed. Through the analysis of the threshold voltage shift and subthreshold swing evolution, as well as studies of ferroelectric polarization stability under radiation, it is revealed that the erased state degradation is caused by oxide-trapped charges rather than interface degradation or polarization switching. The physical mechanism of the difference in radiation-induced oxide-trapped charges buildup in programmed and erased FeFETs is analyzed to explain different TID radiation characteristics between them. Our work suggests that the HfO2-based FeFETs have great potential in radiation environment applications.

4.
Zhongguo Yi Liao Qi Xie Za Zhi ; 37(3): 213-7, 2013 May.
Artigo em Chinês | MEDLINE | ID: mdl-24015619

RESUMO

Recent years, the development of medical devices kits is rapid. How to make the technical evaluation of medical devices kits more perfect bases on the two major principles of safe and effective, and to make kits in the market more normative and orderly, these issues for technical evaluation have to be considered. This article makes a study on current situation of production, classification of management and registration status, combined with existing regulations and related standards, and discusses technical evaluation related issues.


Assuntos
Equipamentos e Provisões/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA