Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioact Mater ; 38: 45-54, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38699237

RESUMO

Effective treatment of Parkinson's disease (PD), a prevalent central neurodegenerative disorder particularly affecting the elderly population, still remains a huge challenge. We present here a novel nanomedicine formulation based on bioactive hydroxyl-terminated phosphorous dendrimers (termed as AK123) complexed with fibronectin (FN) with anti-inflammatory and antioxidative activities. The created optimized AK123/FN nanocomplexes (NCs) with a size of 223 nm display good colloidal stability in aqueous solution and can be specifically taken up by microglia through FN-mediated targeting. We show that the AK123/FN NCs are able to consume excessive reactive oxygen species, promote microglia M2 polarization and inhibit the nuclear factor-kappa B signaling pathway to downregulate inflammatory factors. With the abundant dendrimer surface hydroxyl terminal groups, the developed NCs are able to cross blood-brain barrier (BBB) to exert targeted therapy of a PD mouse model through the AK123-mediated anti-inflammation for M2 polarization of microglia and FN-mediated antioxidant and anti-inflammatory effects, thus reducing the aggregation of α-synuclein and restoring the contents of dopamine and tyrosine hydroxylase to normal levels in vivo. The developed dendrimer/FN NCs combine the advantages of BBB-crossing hydroxyl-terminated bioactive per se phosphorus dendrimers and FN, which is expected to be extended for the treatment of different neurodegenerative diseases.

2.
Adv Healthc Mater ; : e2400114, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581263

RESUMO

The development of functional nanoplatforms to improve the chemotherapy outcome and inhibit distal cancer cell metastasis remains an extreme challenge in cancer management. In this work, a human-derived PC-3 cancer cell membrane-camouflaged chitosan-polypyrrole nanogel (CH-PPy NG) platform, which can be loaded with chemotherapeutic drug docetaxel (DTX) and RANK siRNA for targeted chemotherapy and gene silencing-mediated metastasis inhibition of late-stage prostate cancer in a mouse model, is reported. The prepared NGs with a size of 155.8 nm show good biocompatibility, pH-responsive drug release profile, and homologous targeting specificity to cancer cells, allowing for efficient and precise drug/gene co-delivery. Through in-vivo antitumor treatment in a xenografted PC-3 mouse tumor model, it is shown that such a CH-PPy NG-facilitated co-delivery system allows for effective chemotherapy to slow down the tumor growth rate, and effectively inhibits the metastasis of prostate cancer to the bone via downregulation of the RANK/RANKL signaling pathway. The created CH-Ppy NGs may be utilized as a promising platform for enhanced chemotherapy and anti-metastasis treatment of prostate cancer.

3.
Biomacromolecules ; 24(2): 886-895, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36668816

RESUMO

Fibronectin (FN) is an essential glycoprotein in the extracellular matrix with favorable biological functions for potential applications in various biomedical fields including wound healing, regenerative medicine, tissue engineering, as well as diagnosis and treatment of cancer and inflammatory diseases. Herein, we aim to explore the influence of intracellular FN delivery on macrophage functions and its possible therapeutic applications. We prepared phenylboronic acid (PBA)-functionalized generation 5 (G5) poly(amidoamine) dendrimers (G5.NH2-PBA) as a nanocarrier to load FN, and reveal that the obtained dendrimers enable efficient intracellular delivery of FN at an optimized dendrimer-to-FN weight ratio of 8, which guides macrophages toward anti-inflammatory M2 phenotype polarization. Studies on action mechanisms show that the dendrimer-mediated FN intracellular delivery acts strongly on suppressing the nuclear factor-κB pathway, leading to reduced pro-inflammatory cytokine secretion and enhanced reactive oxygen species depletion in lipopolysaccharide (LPS)-activated macrophages. Further investigation in vivo using an LPS-induced mouse model of acute lung injury (ALI) shows that the dendrimer-mediated FN delivery can effectively alleviate the ALI symptoms through alleviation of lung inflammation and oxidation stress. Our work suggests a general approach to using dendrimers for mediating intracellular delivery of FN, thereby offering many opportunities to explore the biological functions of FN for different therapeutic applications toward inflammation-associated diseases.


Assuntos
Lesão Pulmonar Aguda , Dendrímeros , Animais , Camundongos , Fibronectinas/farmacologia , Fibronectinas/metabolismo , Lipopolissacarídeos/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Macrófagos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...