Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 12(5): 5021-5029, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29659244

RESUMO

Nanoscale defects in monolayers (MLs) of two-dimensional (2D) materials, such as graphene, transition-metal dichalcogenides, and 2D polymers, can alter their physical, mechanical, optoelectronic, and chemical properties. However, detailed information about nanodefects within 2D covalent monolayers is difficult to obtain because it requires highly selective and sensitive techniques that can provide chemical information at the nanoscale. Here, we report a 2D imine-linked ML prepared from two custom-designed building blocks by dynamic imine chemistry at the air/water interface, in which an acetylenic moiety in one of the blocks was used as a spectroscopic reporter for nanodefects. Combined with density functional theory calculations that take into account surface selection rules, tip-enhanced Raman spectroscopy (TERS) imaging provides information on the chemical bonds, molecular orientation, as well as nanodefects in the resulting ML. Additionally, TERS imaging visualizes the topography and integrity of the ML at Au(111) terrace edges, suggesting possible ductility of the ML. Furthermore, edge-induced molecular tilting and a stronger signal enhancement were observed at the terrace edges, from which a spatial resolution around 8 nm could be deduced. The present work can be used to study covalent 2D materials at the nanoscale, which are expected to be of use when engineering their properties for specific device applications.

2.
Langmuir ; 33(7): 1646-1654, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28125880

RESUMO

The behavior of compound 2 [1,3,5-tri(2,2'-bipyridin-5-yl)benzene] with three bipyridine units arranged in a star geometry is investigated in the presence and absence of Ni(ClO4)2. Its properties at the air-water interface as well as after transfer onto a solid substrate are studied by several techniques including Brewster angle microscopy, X-ray reflectivity, neutron reflectivity, X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, and atomic force microscopy combined with optical microscopy. It is found that compound 2 within the monolayers formed stays almost vertical at the interface and that at high Ni2+/2 (Ni2+/2 = 4000, 20'000) ratios two of the three bipyridine units of 2 are complexed, resulting in supramolecular sheets that are likely composed of arrays of linear metal-organic complexation polymers.

3.
Angew Chem Int Ed Engl ; 55(1): 213-7, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26768822

RESUMO

A two-dimensional covalent organic monolayer was synthesized from simple aromatic triamine and dialdehyde building blocks by dynamic imine chemistry at the air/water interface (Langmuir-Blodgett method). The obtained monolayer was characterized by optical microscopy, scanning electron microscopy, and atomic force microscopy, which unambiguously confirmed the formation of a large (millimeter range), unimolecularly thin aromatic polyimine sheet. The imine-linked chemical structure of the obtained monolayer was characterized by tip-enhanced Raman spectroscopy, and the peak assignment was supported by spectra simulated by density functional theory. Given the modular nature and broad substrate scope of imine formation, the work reported herein opens up many new possibilities for the synthesis of customizable 2D polymers and systematic studies of their structure-property relationships.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA