Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Biofuels Bioprod ; 16(1): 178, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978550

RESUMO

Single-cell protein (SCP) production in the methylotrophic yeast Pichia pastoris has the potential to achieve a sustainable protein supply. However, improving the methanol fermentation efficiency and reducing carbon loss has been a long-standing challenge with far-reaching scientific and practical implications. Here, comparative transcriptomics revealed that PAS_0305, a gene directly associated with cell wall thickness under methanol stress, can be used as a target for unlocking cell wall sensors. Intracellular trehalose accumulation confirmed that cell wall sensors were activated after knocking out PAS_0305, which resulted in increased cell wall permeability. Genome-wide signal perturbations were transduced through the HOG module and the CWI pathway, which was confirmed to connected by Pbs2-Mkk. As a consequence of CWI pathway activation, ΔPAS_0305 elicited a rescue response of cell wall remodeling by increasing the ß-1,3-glucan content and decreasing the chitin/mannose content. Remarkably, perturbations in global stress signals led to a fine-tuning of the metabolic network of ΔPAS_0305, resulting in a superior phenotype with highest crude protein and methanol conversion rate of 67.21% and 0.46 gDCW/g. Further genome-scale metabolic models were constructed to validate the experimental results, confirming that unlocking cell wall sensors resulted in maximized flux from methanol towards SCP and effectively addressing the issue of carbon loss in methanol fermentation. This work sheds new light on the potential of manipulating cellular signaling pathways to optimize metabolic networks and achieve exceptional phenotypic characteristics, providing new strategies for constructing versatile cell factories in P. pastoris.

2.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37834464

RESUMO

Although Pichia pastoris was successfully used for heterologous gene expression for more than twenty years, many factors influencing protein expression remain unclear. Here, we optimized the expression of a thermophilic endoglucanase from Thermothielavioides terrestris (TtCel45A) for cost-effective production in Pichia pastoris. To achieve this, we established a multifactorial regulation strategy that involved selecting a genome-editing system, utilizing neutral loci, incorporating multiple copies of the heterologous expression cassette, and optimizing high-density fermentation for the co-production of single-cell protein (SCP). Notably, even though all neutral sites were used, there was still a slight difference in the enzymatic activity of heterologously expressed TtCel45A. Interestingly, the optimal gene copy number for the chromosomal expression of TtCel45A was found to be three, indicating limitations in translational capacity, post-translational processing, and secretion, ultimately impacting protein yields in P. pastoris. We suggest that multiple parameters might influence a kinetic competition between protein elongation and mRNA degradation. During high-density fermentation, the highest protein concentration and endoglucanase activity of TtCel45A with three copies reached 15.8 g/L and 9640 IU/mL, respectively. At the same time, the remaining SCP of P. pastoris exhibited a crude protein and amino acid content of up to 59.32% and 46.98%, respectively. These findings suggested that SCP from P. pastoris holds great promise as a sustainable and cost-effective alternative for meeting the global protein demand, while also enabling the production of thermophilic TtCel45A in a single industrial process.


Assuntos
Celulase , Saccharomycetales , Pichia/genética , Pichia/metabolismo , Celulase/genética , Celulase/metabolismo , Análise Custo-Benefício , Saccharomycetales/metabolismo , Fermentação , Proteínas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...