Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zhonghua Yu Fang Yi Xue Za Zhi ; 46(5): 430-5, 2012 May.
Artigo em Chinês | MEDLINE | ID: mdl-22883730

RESUMO

OBJECTIVE: To analyze the periodicity of pandemic influenza A (H1N1) in Changsha in year 2009 and its correlation with sensitive climatic factors. METHODS: The information of 5439 cases of influenza A (H1N1) and synchronous meteorological data during the period between May 22th and December 31st in year 2009 (223 days in total) in Changsha city were collected. The classification and regression tree (CART) was employed to screen the sensitive climatic factors on influenza A (H1N1); meanwhile, cross wavelet transform and wavelet coherence analysis were applied to assess and compare the periodicity of the pandemic disease and its association with the time-lag phase features of the sensitive climatic factors. RESULTS: The results of CART indicated that the daily minimum temperature and daily absolute humidity were the sensitive climatic factors for the popularity of influenza A (H1N1) in Changsha. The peak of the incidence of influenza A (H1N1) was in the period between October and December (Median (M) = 44.00 cases per day), simultaneously the daily minimum temperature (M = 13°C) and daily absolute humidity (M = 6.69 g/m(3)) were relatively low. The results of wavelet analysis demonstrated that a period of 16 days was found in the epidemic threshold in Changsha, while the daily minimum temperature and daily absolute humidity were the relatively sensitive climatic factors. The number of daily reported patients was statistically relevant to the daily minimum temperature and daily absolute humidity. The frequency domain was mostly in the period of (16 ± 2) days. In the initial stage of the disease (from August 9th and September 8th), a 6-day lag was found between the incidence and the daily minimum temperature. In the peak period of the disease, the daily minimum temperature and daily absolute humidity were negatively relevant to the incidence of the disease. CONCLUSION: In the pandemic period, the incidence of influenza A (H1N1) showed periodic features; and the sensitive climatic factors did have a "driving effect" on the incidence of influenza A (H1N1).


Assuntos
Clima , Influenza Humana/epidemiologia , China/epidemiologia , Humanos , Vírus da Influenza A Subtipo H1N1 , Influenza Humana/virologia , Análise de Regressão , Fatores de Risco , Estações do Ano , Temperatura
2.
Zhonghua Yu Fang Yi Xue Za Zhi ; 46(3): 246-51, 2012 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-22800597

RESUMO

OBJECTIVE: To explore the influence of landscape elements on the transmission of hemorrhagic fever with renal syndrome (HFRS) in Changsha. METHODS: A total of 327 cases of HFRS diagnosed between year 2005 - 2009 were recruited in the study. Based on the demographic data, meteorological data and the data of second national land survey during the same period, a GIS landscape elements database of HFRS at the township scale of Changsha was established. Spatial-temporal cluster analysis methods were adopted to explore the influence of landscape elements on the spatial-temporal distribution of HFRS in Changsha during the year of 2005 - 2009. RESULTS: The annual incidences of HFRS in Changsha between year 2005 - 2009 were 1.16/100 000 (70 cases), 0.95/100 000 (58 cases), 1.40/100 000(87 cases), 0.75/100 000(47 cases) and 1.02/100 000(65 cases) respectively. The results of poisson regression model analysis of principal component showed that the incidence of HFRS was positively correlated with farmland area (M = 29.00 km2) and urban and rural area (M = 6.12 km2; incidence rate ratios (IRR) = 1.34, 95% CI: 1.27 - 1.41); but negatively correlated with forestland area (M = 39.00 km2; IRR = 0.67, 95% CI: 0.55 - 0.81) and garden plot area (M = 0.99 km2; IRR = 0.74, 95% CI: 0.63 - 0.86). A significant cluster of the spatial-temporal distribution of HFRS cases was found in the study. The primary cluster (28.9 N, 113.37 E, radius at 22.22 km, RR = 5.23, log likelihood ratio (LLR) = 51.61, P <0.01, 67 cases of HFRS and incidence at 4.4/100 000) was found between year 2006 and 2007; and the secondary cluster (28.2 N, 113.6 E, RR = 10.77, LLR = 16.01, P < 0.01, 11 cases of HFRS and the incidence at 10.6/100 000) was found between year 2008 and 2009. CONCLUSION: The landscape elements were found to be closely related to the prevalence and transmission of HFRS.


Assuntos
Sistemas de Informação Geográfica , Febre Hemorrágica com Síndrome Renal/transmissão , China/epidemiologia , Clima , Febre Hemorrágica com Síndrome Renal/epidemiologia , Humanos , Análise de Regressão , Conglomerados Espaço-Temporais
3.
Zhonghua Yu Fang Yi Xue Za Zhi ; 45(10): 881-5, 2011 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-22321585

RESUMO

OBJECTIVE: To realize the influence of climatic changes on the transmission of hemorrhagic fever with renal syndrome (HFRS), and to explore the adoption of climatic factors in warning HFRS. METHODS: A total of 2171 cases of HFRS and the synchronous climatic data in Changsha from 2000 to 2009 were collected to a climate-based forecasting model for HFRS transmission. The Cochran-Armitage trend test was employed to explore the variation trend of the annual incidence of HFRS. Cross-correlations analysis was then adopted to assess the time-lag period between the climatic factors, including monthly average temperature, relative humidity, rainfall and Multivariate Elño-Southern Oscillation Index (MEI) and the monthly HFRS cases. Finally the time-series Poisson regression model was constructed to analyze the influence of different climatic factors on the HFRS transmission. RESULTS: The annual incidence of HFRS in Changsha between 2000 - 2009 was 13.09/100 000 (755 cases), 9.92/100 000 (578 cases), 5.02/100 000 (294 cases), 2.55/100 000 (150 cases), 1.13/100 000 (67 cases), 1.16/100 000 (70 cases), 0.95/100 000 (58 cases), 1.40/100 000 (87 cases), 0.75/100 000 (47 cases) and 1.02/100 000 (65 cases), respectively. The incidence showed a decline during these years (Z = -5.78, P < 0.01). The results of Poisson regression model indicated that the monthly average temperature (18.00°C, r = 0.26, P < 0.01, 1-month lag period; IRR = 1.02, 95%CI: 1.00 - 1.03, P < 0.01), relative humidity (75.50%, r = 0.62, P < 0.01, 3-month lag period; IRR = 1.03, 95%CI: 1.02 - 1.04, P < 0.01), rainfall (112.40 mm, r = 0.25, P < 0.01, 6-month lag period; IRR = 1.01, 95CI: 1.01 - 1.02, P = 0.02), and MEI (r = 0.31, P < 0.01, 3-month lag period; IRR = 0.77, 95CI: 0.67 - 0.88, P < 0.01) were closely associated with monthly HFRS cases (18.10 cases). CONCLUSION: Climate factors significantly influence the incidence of HFRS. If the influence of variable-autocorrelation, seasonality, and long-term trend were controlled, the accuracy of forecasting by the time-series Poisson regression model in Changsha would be comparatively high, and we could forecast the incidence of HFRS in advance.


Assuntos
Mudança Climática , Febre Hemorrágica com Síndrome Renal/epidemiologia , Modelos Teóricos , China/epidemiologia , Previsões , Febre Hemorrágica com Síndrome Renal/transmissão , Humanos , Umidade , Incidência , Estações do Ano , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...