Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(14): 6311-6320, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35353520

RESUMO

Nanozymes have emerged as a class of novel catalytic nanomaterials that show great potential to substitute natural enzymes in various applications. Nevertheless, spatial organization of multiple subunits in a nanozyme to rationally engineer its catalytic properties remains to be a grand challenge. Here, we report a DNA-based approach to encode the organization of gold nanoparticle clusters (GNCs) for the construction of programmable enzyme equivalents (PEEs). We find that single-stranded (ss-) DNA scaffolds can self-fold into nanostructures with prescribed poly-adenine (polyA) loops and double-stranded stems and that the polyA loops serve as specific sites for seed-free nucleation and growth of GNCs with well-defined particle numbers and interparticle spaces. A spectrum of GNCs, ranging from oligomers with discrete particle numbers (2-4) to polymer-like chains, are in situ synthesized in this manner. The polymeric GNCs with multiple spatially organized nanoparticles as subunits show programmable peroxidase-like catalytic activity that can be tuned by the scaffold size and the inter-polyA spacer length. This study thus opens new routes to the rational design of nanozymes for various biological and biomedical applications.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Catálise , DNA de Cadeia Simples , Ouro/química , Nanopartículas Metálicas/química , Nanoestruturas/química
2.
Angew Chem Int Ed Engl ; 61(11): e202114190, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-34962699

RESUMO

Integrating dissimilar materials at the nanoscale is crucial for modern electronics and optoelectronics. The structural DNA nanotechnology provides a universal platform for precision assembly of materials; nevertheless, heterogeneous integration of dissimilar materials with DNA nanostructures has yet to be explored. We report a DNA origami-encoded strategy for integrating silica-metal heterostructures. Theoretical and experimental studies reveal distinctive mechanisms for the binding and aggregation of silica and metal clusters on protruding double-stranded DNA (dsDNA) strands that are prescribed on the DNA origami template. In particular, the binding energy differences of silica/metal clusters and DNA molecules underlies the accessibilities of dissimilar material areas on DNA origami. By programming the densities and lengths of protruding dsDNA strands on DNA origami, silica and metal materials can be independently deposited at their predefined areas with a high vertical precision of 2 nm. We demonstrate the integration of silica-gold and silica-silver heterostructures with high site addressability. This DNA nanotechnology-based strategy is thus applicable for integrating various types of dissimilar materials, which opens up new routes to bottom-up electronics.

3.
Nano Lett ; 20(8): 5604-5615, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32787185

RESUMO

The bottom-up DNA-templated nanoelectronics exploits the unparalleled self-assembly properties of DNA molecules and their amenability with various types of nanomaterials. In principle, nanoelectronic devices can be bottom-up assembled with near-atomic precision, which compares favorably with well-established top-down fabrication process with nanometer precision. Over the past decade, intensive effort has been made to develop DNA-based nanoassemblies including DNA-metal, DNA-polymer, and DNA-carbon nanotube complexes. This review introduces the history of DNA-based fabrication for nanoelectronics briefly and summarizes the state-of-art advances of DNA-based nanoelectronics. In particular, the most widely applied characterization techniques to explore their unique electronic properties at the nanoscale are described and discussed, including scanning tunneling microscopy, conductive atomic force microscopy, and Kelvin probe force microscopy. We also provide a perspective on potential applications of DNA-based nanoelectronics.


Assuntos
Nanoestruturas , Nanotecnologia , DNA , Eletrônica , Microscopia de Força Atômica
4.
Nat Protoc ; 14(8): 2416-2436, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31270509

RESUMO

Soft matter can serve as a template to guide the growth of inorganic components with well-controlled structural features. However, the limited design space of conventional organic and biomolecular templates restricts the complexity and accuracy of templated growth. In past decades, the blossoming of structural DNA nanotechnology has provided us with a large reservoir of delicate-framework nucleic acids with design precision down to a single base. Here, we describe a DNA origami silicification (DOS) approach for generating complex silica composite nanomaterials. By utilizing modified silica sol-gel chemistry, pre-hydrolyzed silica precursor clusters can be uniformly coated onto the surface of DNA frameworks; thus, user-defined DNA-silica hybrid materials with ~3-nm precision can be achieved. More importantly, this method is applicable to various 1D, 2D and 3D DNA frameworks that range from 10 to >1,000 nm. Compared to pure DNA scaffolds, a tenfold increase in the Young's modulus (E modulus) of these composites was observed, owing to their soft inner core and solid silica shell. We further demonstrate the use of solidified DNA frameworks to create 3D metal plasmonic devices. This protocol provides a platform for synthesizing inorganic materials with unprecedented complexity and tailored structural properties. The whole protocol takes ~10 d to complete.


Assuntos
Nanotecnologia/métodos , Ácidos Nucleicos/química , Ácidos Nucleicos/ultraestrutura , Dióxido de Silício/química , Módulo de Elasticidade , Transição de Fase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...