Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Guang Pu Xue Yu Guang Pu Fen Xi ; 26(9): 1581-3, 2006 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-17112021

RESUMO

The photoelectron decay characteristic directly reflects the photographic efficiency of silver halide crystals. Measurement of the electronic decay time-resolved spectrum of silver halide microcrystals can provide important information about the photoelectron decay action in latent image formation process. In order to know the influence of shallow electron trap dopant K4 Fe (CN)6 and S+Au on photoelectron decay, the photoelectron decay time-resolved spectra of AgCl emulsion doped by K4 Fe(CN) and that doped by K4 Fe(CN) firstly and then sensitized by S+Au were detected by microwave absorption dielectric technique, which can be used to study the decay process of free photoelectrons and shallow-trapped electrons in semiconductor crystals. The experimental results show that when the doping content is 10(-8)-10(-7) mol x mol(-1) Ag, the photoelectron decay process becomes slower, namely, the photoelectron decay time is longer, as the doping is near the grain surface before sensitization. After S+Au sensitization, the photoelectron decay becomes faster, showing that the sensitization centre acts as a deep electron trap. And when the doping is near the grain surface with 90% Ag, the photoelectron decay time becomes shorter, showing that the doping centre and the sensitization centre may interact.

2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 25(1): 26-8, 2005 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-15852810

RESUMO

Microwave absorption and film dielectric spectrum detection technology was used to study the influence of complex K4Ru (CN)6 on the photoelectron decay time-resolved spectrum of cubic AgCl crystals illuminated in this paper. The results indicate that the influence of the doping content and doping position of the complex K4Ru(CN)6 on the photoelectron decay time-resolved spectrum is evident. The photoelectron decay process of this emulsion is slowest, and the photoelectron lifetime is longest when doped with K4Ru (CN)6 of 2.45 x 10(-5) mol x (mol Ag)(-1) at doping positions of 75% Ag.


Assuntos
Elétrons , Cianeto de Potássio/química , Compostos de Rutênio/química , Compostos de Prata/química , Análise Espectral/métodos , Cristalização , Emulsões/química , Processos Fotoquímicos/efeitos da radiação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...