Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ageing Res Rev ; 95: 102223, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38325753

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized by progressive cognitive decline and the accumulation of amyloid-beta plaques, tau tangles, and neuroinflammation in the brain. Postoperative cognitive dysfunction (POCD) is a prevalent and debilitating condition characterized by cognitive decline following neuroinflammation and oxidative stress induced by procedures. POCD and AD are two conditions that share similarities in the underlying mechanisms and pathophysiology. Compared to normal aging individuals, individuals with POCD are at a higher risk for developing AD. Emerging evidence suggests that astrocytes, the most abundant glial cells in the central nervous system, play a critical role in the pathogenesis of these conditions. Comprehensive functions of astrocyte in AD has been extensively explored, but very little is known about POCD may experience late-onset AD pathogenesis. Herein, in this context, we mainly explore the multifaceted roles of astrocytes in the context of POCD, highlighting their involvement in neuroinflammation, neurotransmitter regulation, synaptic plasticity and neurotrophic support, and discuss how POCD may augment the onset of AD. Additionally, we discuss potential therapeutic strategies targeting astrocytes to mitigate or prevent POCD, which hold promise for improving the quality of life for patients undergoing surgeries and against AD in the future.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Complicações Cognitivas Pós-Operatórias , Humanos , Astrócitos/patologia , Complicações Cognitivas Pós-Operatórias/patologia , Doenças Neuroinflamatórias , Qualidade de Vida , Doença de Alzheimer/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Peptídeos beta-Amiloides
2.
Tissue Cell ; 85: 102217, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37774521

RESUMO

BACKGROUND: Pregnancy-induced hypertension (PIH) is associated with significant maternal and fetal mortality. The present study is aimed at exploring the molecular mechanism of C1q/TNF-related protein 9 (CTRP9) in PIH. METHODS: Human placental vascular endothelial cells (HPVECs) underwent hypoxia/reoxygenation (H/R) to construct an in vitro PIH cellular model. Cell transfection was conducted to over-express CTRP9. The expression level of CTRP9 was determined by western blot and quantitative real-time PCR. CCK-8, flow cytometry, wound-healing and tube formation assays were conducted to assess cell viability, apoptosis, migration and angiogenesis, respectively. Mitochondrial membrane potential (∆ψm) was evaluated adopting JC-1 staining. Mitochondrial ROS and copy number (mtDNA) were examined using superoxide indicator and real-time PCR, respectively. Then, HPVECs were pre-treated with Compound C (CC), the inhibitor of AMPK, for regulatory mechanism research. RESULTS: CTRP9 was downregulated in HPVECs exposed to H/R induction. CTRP9 overexpression retards H/R-mediated cell viability loss and apoptosis, impaired migration and angiogenesis of HPVECs. Meanwhile, CTRP9 overexpression alleviates H/R-mediated mitochondrial dysfunction in HPVECs by enhancing mitochondrial ∆ψm, reducing mitochondrial ROS generation and increasing mtDNA copies. In addition, CTRP9 activated AMPK/Nrf2 signaling in H/R-mediated HPVECs, and additional treatment of CC greatly weakened the functional effects of CTRP9 in H/R-mediated HPVECs. CONCLUSION: Our results suggested that CTRP9 protected against H/R-mediated HPVECs injuries dependent on AMPK/Nrf2 signaling and could be applied as a potential therapy for PIH.


Assuntos
Proteínas Quinases Ativadas por AMP , Células Endoteliais , Feminino , Humanos , Gravidez , Adiponectina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/genética , DNA Mitocondrial/metabolismo , Células Endoteliais/metabolismo , Glicoproteínas/metabolismo , Hipóxia/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Placenta/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Animal Model Exp Med ; 6(4): 317-328, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37565549

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is the main reason for cirrhosis and hepatocellular carcinoma. As a starting point for NAFLD, the treatment of nonalcoholic fatty liver (NAFL) is receiving increasing attention. Mice fed a high-fat diet (HFD) and hereditary leptin deficiency (ob/ob) mice are important NAFL animal models. However, the comparison of these mouse models with human NAFL is still unclear. METHODS: In this study, HFD-fed mice and ob/ob mice were used as NAFL animal models. Liver histopathological characteristics were compared, and liver transcriptome from both mouse models was performed using RNA sequencing (RNA-seq). RNA-seq data obtained from the livers of NAFL patients was downloaded from the GEO database. Global gene expression profiles in the livers were further analyzed using functional enrichment analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. RESULTS: Our results showed that the biochemical parameters of both mouse models and human NAFL were similar. Compared with HFD-fed mice, ob/ob mice were more similar in histologic appearance to NAFL patients. The liver transcriptome characteristics partly overlapped in mice and humans. Furthermore, in the NAFL pathway, most genes showed similar trends in mice and humans, thus demonstrating that both types of mice can be used as models for basic research on NAFL, considering the differences. CONCLUSION: Our findings show that HFD-fed mice and ob/ob mice can mimic human NAFL partly in pathophysiological process. The comparative analysis of liver transcriptome profile in mouse models and human NAFL presented here provides insights into the molecular characteristics across these NAFL models.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Transcriptoma , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia
4.
Br J Nutr ; 130(9): 1473-1486, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36815302

RESUMO

Fat deposition and lipid metabolism are closely related to the morphology, structure and function of mitochondria. The morphology of mitochondria between fusion and fission processes is mainly regulated by protein posttranslational modification. Intermittent fasting (IF) promotes high expression of Sirtuin 3 (Sirt3) and induces mitochondrial fusion in high-fat diet (HFD)-fed mice. However, the mechanism by which Sirt3 participates in mitochondrial protein acetylation during IF to regulate mitochondrial fusion and fission dynamics remains unclear. This article demonstrates that IF promotes mitochondrial fusion and improves mitochondrial function in HFD mouse inguinal white adipose tissue. Proteomic sequencing revealed that IF increased protein deacetylation levels in HFD mice and significantly increased Sirt3 mRNA and protein expression. After transfecting with Sirt3 overexpression or interference vectors into adipocytes, we found that Sirt3 promoted adipocyte mitochondrial fusion and improved mitochondrial function. Furthermore, Sirt3 regulates the JNK-FIS1 pathway by deacetylating malate dehydrogenase 2 (MDH2) to promote mitochondrial fusion. In summary, our study indicates that IF promotes mitochondrial fusion and improves mitochondrial function by upregulating the high expression of Sirt3 in HFD mice, promoting deacetylation of MDH2 and inhibiting the JNK-FIS1 pathway. This research provides theoretical support for studies related to energy limitation and animal lipid metabolism.


Assuntos
Sirtuína 3 , Camundongos , Animais , Sirtuína 3/genética , Sirtuína 3/metabolismo , Dinâmica Mitocondrial , Jejum Intermitente , Proteômica , Adipócitos/metabolismo
5.
Bioengineered ; 13(1): 1626-1636, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35001801

RESUMO

Hepatocellular carcinoma (HCC) is a highly vascularized solid tumor with a fast growth rate. According to bioinformatics analysis, CC chemokine ligand 23 (CCL23) has clinical significance for survival and prognosis in HCC. The online databases TCGA and CCLE were used to analyze the expression level of CCL23, and its expression was also measured in HCC cell lines by RT-qPCR and Western blotting. The STRING database and co-immunoprecipitation were employed to evaluate the association between CCL23 and transcription factor activating enhancer binding protein 4 (TFAP4). Overexpression plasmids for CCL23 (Ov-CCL23) and TFAP4 (Ov-TFAP4) were transfected into Huh-7 cells to detect TFAP4 expression. Huh-7 cells injected with OV-negative control (NC)/Ov-CCL23 or OV-NC/Ov-CCL23 plus Ov-TFAP4 were utilized to study the function of CCL23/TFAP4. Cell proliferation, invasion and human umbilical vein endothelial cell tube formation assays were conducted. The database revealed decreased expression of CCL23 in HCC and that it was commonly downregulated in HCC cell lines. TFAP4 expression was negatively correlated with CCL23. The overexpression of CCL23 inhibited the proliferation and invasion of Huh-7 cells, whereas TFAP4 blocked these effects. Similarly, the supernatant of CCL23-upregulated cells exhibited significantly lower tube formation potential, and low vascular endothelial growth factor A (VEGFA), VEGFRs expression compared with those of non-transfected Huh-7 cells, while TFAP4 plasmid co-transfected markedly increased these. Taken together, the present study suggests that CCL23 is expressed at low levels in HCC; it inhibits HCC cell proliferation, invasion and angiogenesis in vitro; and its action is negatively associated with and can be blocked by TFAP4.


Assuntos
Carcinoma Hepatocelular/genética , Quimiocinas CC/genética , Quimiocinas CC/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Neoplasias Hepáticas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/metabolismo , Invasividade Neoplásica , Prognóstico , Receptores de Fatores de Crescimento do Endotélio Vascular , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...