Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Endocrinol ; 592: 112321, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936596

RESUMO

The tricarboxylic acid (TCA) cycle is an essential interface that coordinates cellular metabolism and is as a primary route determining the fate of a variety of fuel sources, including glucose, fatty acid and glutamate. The crosstalk of nutrients replenished TCA cycle regulates breast cancer (BC) progression by changing substrate levels-induced epigenetic alterations, especially the methylation, acetylation, succinylation and lactylation. Long non-coding RNAs (lncRNA) have dual roles in inhibiting or promoting energy reprogramming, and so altering the metabolic flux of fuel sources to the TCA cycle, which may regulate epigenetic modifications at the cellular level of BC. This narrative review discussed the central role of the TCA cycle in interconnecting numerous fuels and the induced epigenetic modifications, and the underlying regulatory mechanisms of lncRNAs in BC.

2.
Animals (Basel) ; 14(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473059

RESUMO

Insulin-like peptide 3 (INSL3) is a constitutive product of mature, adult-type Leydig cells of the testes and consequently in most mammals is an ideal biomarker with which to monitor pubertal development. A new heterologous time-resolved fluorescence immunoassay was developed and validated to measure circulating INSL3 in the blood of adult male dogs. Compared to other species, INSL3 concentration is low with marked variation between individuals, which appears to be independent of breed, age, or weight. A model system was then used in which a cohort of beagle dogs was subject to a GnRH-agonist implant to suppress the HPG axis and spermatogenesis, followed by implant removal and recovery. Unlike testosterone, INSL3 levels were not fully suppressed in all animals by the GnRH agonist, nor was the recovery of Leydig cell function following implant removal uniform or complete, even after several weeks. In dogs, and dissimilar from other species (including humans), Leydig-cell INSL3 appears to be quite variable between individual dogs and only weakly connected to the physiology of the HPG axis after its suppression by a GnRH-agonist implant and recovery. Consequently, INSL3 may be less useful in this species for the assessment of testis function.

3.
Front Physiol ; 8: 359, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28634453

RESUMO

In most mammals the peptide hormone relaxin is a key physiological component regulating early pregnancy and birth. However, synteny analysis shows that the gene encoding ovarian relaxin-2 is deleted in cows and sheep. While, these ruminants appear to exhibit a relaxin-like physiology, as in other mammals, until now a molecular understanding of this has been lacking. Cloning and expression analysis of the cognate bovine receptor for relaxin, RXFP1, as well as of the structurally related receptor, RXFP2, in female tissues, shows that these are expressed in a similar way to other mammals. RXFP1 transcripts are found in ovarian theca cells, endometrium, and myometrium, whereas RXFP2 transcripts are expressed in ovarian theca cells, oocytes, as well as in myometrium. Transfection of receptor-expressing gene constructs into HEK293 cells indicates that bovine RXFP1 has a greater EC50 at 10-50 nM for porcine or human relaxin, compared to human RXFP1. For bovine RXFP2, in contrast, the EC50 is <1 nM for its cognate ligand, bovine INSL3, but also 10-30 nM for porcine or human relaxin. Functional analysis shows that bovine myometrial cells are able to respond to exogenous relaxin and INSL3 with a significant increase in cAMP. Although expressing mRNA for both RXFP1 and RXFP2, bovine follicular theca cells only respond to INSL3 with a dose-dependent increase in cAMP. Altogether the results suggest that the cow is able to compensate for the missing hormone, and moreover imply that relaxin analogs could offer an important therapeutic option in treating female ruminant infertility.

4.
Front Physiol ; 8: 1033, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29311967

RESUMO

Insulin-like peptide 3 (INSL3) and its specific receptor RXFP2 are both expressed by theca interna cells of the growing antral follicle where they form an essential regulatory element in the production of the steroid precursor androstenedione. Using primary cultures of bovine theca cells from the mid follicular phase together with steroid agonists and antagonists we have examined how ovarian steroids modulate INSL3 expression. Transcript analysis shows that these cells express estrogen receptors α and ß, androgen and progesterone receptors, besides the orphan nuclear receptors SF1 and nur77. Whereas, exogenous androgens have little or no effect, the androgen antagonist bicalutamide stimulates INSL3 production. In contrast, estrogen receptor agonists, as also progesterone, are stimulatory. Importantly, estrogen receptor signaling is convergent with the protein kinase A signaling pathway activated by LH, such that the estrogen receptor antagonist can inhibit the mild stimulatory effect of LH, and vice versa the PKA antagonist H89 blocks stimulation by estradiol. A significant finding is that the major steroid metabolite androstenedione appears to act predominantly as an estrogen and not an androgen in this system. Transfection of INSL3 gene promoter-reporter constructs together with various steroid receptor expression plasmids supports these findings and shows that steroid action uses non-classical pathways not requiring canonical steroid-responsive elements in the proximal promoter region. Together, the results indicate that increasing estrogens in the follicular phase stimulate a feedforward loop driving INSL3 signaling and thereby promoting steroidogenesis in the growing antral follicle until the LH surge which effectively switches off INSL3 expression.

5.
Mol Cell Endocrinol ; 382(1): 466-471, 2014 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23632104

RESUMO

Steroidogenic tissues such as the ovary, testes or adrenal glands are paradoxical in that they often indicate actions of steroid hormones within a dynamic range of ligand concentration in a high nanomolar or even micromolar level, i.e. at the natural concentrations existing within those organs. Yet ligand-activated nuclear steroid receptors act classically by direct interaction with DNA in the picomolar or low nanomolar range. Moreover, global genomic studies suggest that less than 40% of steroid-regulated genes involve classical responsive elements in gene promoter regions. The bovine oxytocin gene is a key element in the maternal recognition of pregnancy in ruminants and is regulated via an SF1 site in its proximal promoter. This gene is also regulated by steroids acting in a non-classical manner, involving nuclear receptors which do not interact directly with DNA. Dose-response relationships for these actions are in the high nanomolar range. Similar 'steroid sensing' mechanisms may prevail for other SF1-regulated genes and predict alternative pathways by which environmental endocrine disruptors might influence the functioning of steroid-producing organs and hence indirectly the steroid-dependent control of physiology and development.


Assuntos
Modelos Biológicos , Ovário/metabolismo , Ocitocina/metabolismo , Esteroides/metabolismo , Animais , Bovinos , Feminino , Humanos , Ovário/efeitos dos fármacos , Ocitocina/genética , Transdução de Sinais/efeitos dos fármacos , Xenobióticos/farmacologia
6.
Endocrinology ; 154(5): 1897-906, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23546605

RESUMO

Insulin-like peptide 3 (INSL3), a major product of testicular Leydig cells, is also expressed by the ovary, but its functional role remains poorly understood. Here, we quantified expression of INSL3 and its receptor RXFP2 in theca interna cell (TIC) and granulosa cell compartments of developing bovine antral follicles and in corpora lutea (CL). INSL3 and RXFP2 mRNA levels were much higher in TIC than granulosa cell and increased progressively during follicle maturation with INSL3 peaking in large (11-18 mm) estrogen-active follicles and RXFP2 peaking in 9- to 10-mm follicles before declining in larger (11-18 mm) follicles. Expression of both INSL3 and RXFP2 in CL was much lower than in TIC. In situ hybridization and immunohistochemistry confirmed abundant expression of INSL3 mRNA and protein in TIC. These observations indicate follicular TIC rather than CL as the primary site of both INSL3 production and action, implying a predominantly autocrine/paracrine role in TIC. To corroborate the above findings, we showed that in vitro exposure of TIC to a luteinizing concentration of LH greatly attenuated expression of both INSL3 and its receptor while increasing progesterone secretion and expression of STAR and CYP11A1. Moreover, in vivo, a significant cyclic variation in plasma INSL3 was observed during synchronized estrous cycles. INSL3 and estradiol-17ß followed a similar pattern, both increasing after luteolysis, before falling sharply after the LH surge. Thus, theca-derived INSL3, likely from the dominant preovulatory follicle, is detectable in peripheral blood of cattle, and expression is down-regulated during luteinization induced by the preovulatory LH surge. Collectively, these findings underscore the likely role of INSL3 as an important intrafollicular modulator of TIC function/steroidogenesis, while raising doubts about its potential contribution to CL function.


Assuntos
Corpo Lúteo/metabolismo , Sincronização do Estro/sangue , Insulina/sangue , Insulina/genética , Folículo Ovariano/metabolismo , Ovário/metabolismo , Proteínas/genética , Receptores Acoplados a Proteínas G/genética , Animais , Análise Química do Sangue/veterinária , Bovinos , Células Cultivadas , Cloprostenol/farmacologia , Corpo Lúteo/efeitos dos fármacos , Corpo Lúteo/crescimento & desenvolvimento , Ciclo Estral/sangue , Ciclo Estral/efeitos dos fármacos , Ciclo Estral/genética , Ciclo Estral/metabolismo , Sincronização do Estro/efeitos dos fármacos , Sincronização do Estro/genética , Sincronização do Estro/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Insulina/análise , Insulina/metabolismo , Luteolíticos/farmacologia , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/fisiologia , Ovário/efeitos dos fármacos , Ovário/crescimento & desenvolvimento , Proteínas/análise , Proteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
7.
Proc Natl Acad Sci U S A ; 110(15): E1426-35, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23530236

RESUMO

Bone morphogenetic proteins (BMPs) are firmly implicated as intra-ovarian regulators of follicle development and steroidogenesis. Here we report a microarray analysis showing that treatment of cultured bovine theca cells (TC) with BMP6 significantly (>twofold; P < 0.01) up- or down-regulated expression of 445 genes. Insulin-like peptide 3 (INSL3) was the most heavily down-regulated gene (-43-fold) with cytochrome P450, subfamily XVII (CYP17A1) and other key steroidogenic transcripts including steroidogenic acute regulatory protein (STAR), cytochrome P450 family 11, subfamily A1 (CYP11A1) and 3 beta-hydroxysteroid dehydrogenase type 1 (HSD3B1) also down-regulated. BMP6 also reduced expression of nuclear receptor subfamily 5A1 (NR5A1) known to target the promoter regions of the aforementioned genes. Real-time PCR confirmed these findings and also revealed a marked reduction in expression of INSL3 receptor, relaxin/insulin-like family peptide receptor 2 (RXFP2). Secretion of INSL3 protein and androstenedione were also suppressed suggesting a functional link between BMP and INSL3 pathways in controlling androgen synthesis. RNAi-mediated knockdown of INSL3 reduced INSL3 mRNA (75%) and protein (94%) level and elicited a 77% reduction in CYP17A1 mRNA and 83% reduction in androstenedione secretion. Knockdown of RXFP2 also reduced CYP17A1 expression (81%) and androstenedione secretion (88%). Conversely, treatment with exogenous (human) INSL3 increased androstenedione secretion ∼twofold. The CYP17A1 inhibitor abiraterone abolished androgen secretion and reduced expression of both INSL3 and RXFP2. Collectively, these findings indicate a positive autoregulatory role for INSL3 signaling in maintaining thecal androgen production, and visa versa. Moreover, BMP6-induced suppression of thecal androgen synthesis may be mediated, at least in part, by reduced INSL3-RXFP2 signaling.


Assuntos
Androgênios/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Insulina/metabolismo , Ovário/metabolismo , Proteínas/metabolismo , Animais , Bovinos , Células Cultivadas , Análise por Conglomerados , Fator de Crescimento Epidérmico/metabolismo , Feminino , Humanos , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase/métodos , Transdução de Sinais , Esteroide 17-alfa-Hidroxilase/metabolismo , Fator Esteroidogênico 1/metabolismo , Células Tecais/citologia , Fator de Crescimento Transformador alfa/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
8.
Fertil Steril ; 99(4): 1153-60, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23337591

RESUMO

Neohormone systems are defined as evolutionarily new endocrine or paracrine adaptations that supplement basic physiologic functions and define mammalian success. The relaxin family of peptide hormones are typical neohormones. Because they define the specific mammalian aspects of reproductive physiology, such as viviparity with implantation and placentation, lactation, or in the male the necessary adaptations to sperm needed for successful internal fertilization, they offer excellent biomarkers for characterizing reproductive health and disease. For example, ovarian H2-relaxin aids implantation and the establishment of the placenta, and circulating levels are significantly altered in early miscarriage. In the fetus, testicular INSL3 is responsible for the first phase of testicular descent and may be disrupted in cryptorchidism. In the adult, INSL3 is believed to be involved as an antiapoptotic factor in germ cell survival (male) and follicle selection (female) and acts as an excellent measure of Leydig cell functional capacity, particularly in the aging male. INSL5 and INSL6 appear also to be involved in the maintenance of adequate spermatogenesis. With the development of robust immunoassays for various relaxin family members, we are progressively gathering baseline information about normal biomarker levels as well as their perturbations in a wide range of reproductive pathologies.


Assuntos
Hormônios/metabolismo , Infertilidade Feminina/metabolismo , Infertilidade Masculina/metabolismo , Saúde Reprodutiva , Biomarcadores/metabolismo , Feminino , Humanos , Infertilidade Feminina/diagnóstico , Infertilidade Masculina/diagnóstico , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...