Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38977546

RESUMO

Because of their excellent plasticity, phthalates or phthalic acid esters (PAEs) are widely used in plastic products. However, due to the recognized toxicity of PAEs and legislative requirements, the production and use of emerging PAE alternatives have rapidly grown, such as di-isononyl cyclohexane-1,2-dicarboxylate (DINCH) and di(2-ethylhexyl) terephthalate (DEHTP) which are the primary replacements for classic PAEs. Nowadays, PAEs and emerging PAE alternatives are frequently found in a variety of environmental media, including the atmosphere, sludge, rivers, and seawater/sediment. PAEs and emerging PAE alternatives are involved in endocrine-disrupting effects, and they affect the reproductive physiology of different species of fish and mammals. Therefore, their presence in the environment is of considerable concern due to their potential effects on ecosystem function and public health. Nevertheless, current research on the prevalence, destiny, and conduct of PAEs in the environment has primarily focused on classic PAEs, with little attention given to emerging PAE alternatives. The present article furnishes a synopsis of the physicochemical characteristics, occurrence, transport, fate, and adverse effects of both classic PAEs and emerging PAE alternatives on organisms in the ecosystem. Our analysis reveals that both classic PAEs and emerging PAE alternatives are widely distributed in all environmental media, with emerging PAE alternatives increasingly replacing classic PAEs. Various pathways can transform and degrade both classic PAEs and emerging PAE alternatives, and their own and related metabolites can have toxic effects on organisms. This research offers a more extensive comprehension of the health hazards associated with classic PAEs and emerging PAE alternatives.

2.
J Hazard Mater ; 474: 134865, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38861902

RESUMO

With the massive release of microplastics (MPs) into the environment, research related to MPs is advancing rapidly. Effective research methods are necessary to identify the chemical composition, shape, distribution, and environmental impacts of MPs. In recent years, artificial intelligence (AI)-driven machine learning methods have demonstrated excellent performance in analyzing MPs in soil and water. This review provides a comprehensive overview of machine learning methods for the prediction of MPs for various tasks, and discusses in detail the data source, data preprocessing, algorithm principle, and algorithm limitation of applied machine learning. In addition, this review discusses the limitation of current machine learning methods for various task analysis in MPs along with future prospect. Finally, this review finds research potential in future work in building large generalized MPs datasets, designing high-performance but low-computational-complexity algorithms, and evaluating model interpretability.

3.
Environ Res ; 243: 117864, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38072105

RESUMO

Microplastics (MPs, less than 5 mm in size) are widely distributed in surroundings in various forms and ways, and threaten ecosystems security and human health. Its environmental behavior as pollutants carrier and the after-effects exposed to MPs has been extensively exploited; whereas, current knowledge on technologies for the separation and degradation of MPs is relatively limited. It is essential to isolate MPs from surroundings and/or degrade to safe levels. This in-depth review details the origin and distribution of MPs. Provides a comprehensive summary of currently available MPs separation and degradation technologies, and discusses the mechanisms, challenges, and application prospects of these technologies. Comparison of the contribution of various separation methods to the separation of NPs and MPs. Furthermore, the latest research trends and direction in bio-degradation technology are outlooked.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Humanos , Microplásticos , Ecossistema , Plásticos , Tecnologia
4.
Environ Pollut ; 342: 123034, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016589

RESUMO

The extensive utilization and inadequate handling of plastics have resulted in severe environmental ramifications. In particular, plastics composed solely of a carbon-carbon (C-C) backbone exhibit limited degradation due to the absence of hydrolyzable functional groups. Plastics with enduring longevity in the natural environment are susceptible to environmental factors and their intrinsic properties, subsequently undergoing a series of aging processes that culminate in biodegradation. This article focuses on polystyrene (PS), which constitutes 20% of total plastic waste, as a case study. Initially, the application of PS in life and the impacts it poses are introduced. Following that, the key factors influencing the aging of PS are discussed, primarily encompassing its properties (e.g., surface characteristics, additives) and environmental factors (e.g., water matrices, biofilms). Lastly, an overview of microbial degradation of PS is provided, including potential microorganisms involved in PS degradation (bacteria, fungi, algae, and insects), four processes of microbial degradation (colonization, bio-fragmentation, assimilation, and mineralization), and potential mechanisms of microbial degradation. This study provides a comprehensive understanding of the multifaceted influences affecting the aging and biodegradation mechanisms of PS, thereby contributing valuable insights for the future management of plastic pollution.


Assuntos
Plásticos , Poliestirenos , Poliestirenos/metabolismo , Plásticos/metabolismo , Biodegradação Ambiental , Carbono
5.
J Hazard Mater ; 448: 130878, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36731319

RESUMO

Since the 1980s, plastic waste in the environment has been accumulating, and little is known about fungi biodegradation, especially in dry environments. Therefore, the research on plastic degradation technology is urgent. In this study, we demonstrated that Phanerochaete chrysosporium (P. chrysposporium), a typical species of white rot fungi, could react as a highly efficient biodegrader of polylactic acid (PLA), and 34.35 % of PLA degradation was obtained during 35-day incubation. A similar mass loss of 19.71 % could be achieved for polystyrene (PS) degradation. Here, we presented the visualization of the plastic deterioration process and their negative reciprocal on cell development, which may be caused by the challenge of using PS as a substrate. The RNA-seq analysis indicated that adaptations in energy metabolism and cellular defense were downregulated in the PS group, while lipid synthesis was upregulated in the PLA-treated group. Possible differentially expressed genes (DEG) of plastic degradation, such as hydrophobic proteins, lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase (Lac), Cytochrome P450 (CYP450), and genes involved in styrene or benzoic acid degradation pathways have been recorded, and we proposed a PS degradation pathway.


Assuntos
Basidiomycota , Phanerochaete , Plásticos/metabolismo , Peroxidases/metabolismo , Basidiomycota/metabolismo , Fungos/metabolismo , Biodegradação Ambiental , Poliésteres , Phanerochaete/metabolismo , Lignina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...