Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 11: 971091, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910156

RESUMO

Lipid metabolism disorder is the basis of atherosclerotic lesions, in which cholesterol and low-density lipoprotein (LDL) is the main factor involved with the atherosclerotic development. A high-fat and high-cholesterol diet can lead to this disorder in the human body, thus accelerating the process of disease. The development of single-cell RNA sequencing in recent years has opened the possibility to unbiasedly map cellular heterogeneity with high throughput and high resolution; alterations mediated by a high-fat and high-cholesterol diet at the single-cell transcriptomic level can be explored with this mean afterward. We assessed the aortic arch of 16-week old Apoe-/- mice of two control groups (12 weeks of chow diet) and two HFD groups (12 weeks of high fat, high cholesterol diet) to process single-cell suspension and use single-cell RNA sequencing to anatomize the transcripts of 5,416 cells from the control group and 2,739 from the HFD group. Through unsupervised clustering, 14 cell types were divided and defined. Among these cells, the cellular heterogeneity exhibited in endothelial cells and immune cells is the most prominent. Subsequent screening delineated ten endothelial cell subsets with various function based on gene expression profiling. The distribution of endothelial cells and immune cells differs significantly between the control group versus the HFD one. The existence of pathways that inhibit atherosclerosis was found in both dysfunctional endothelial cells and foam cells. Our data provide a comprehensive transcriptional landscape of aortic arch cells and unravel the cellular heterogeneity brought by a high-fat and high-cholesterol diet. All these findings open new perspectives at the transcriptomic level to studying the pathology of atherosclerosis.

2.
Stem Cells Int ; 2021: 5512153, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721590

RESUMO

Limbal stem cells are essential for continuous corneal regeneration and injury repair. METTL3-catalyzed N6-methyladenosine (m6A) mRNA modifications are involved in many biological processes and play a specific role in stem cell regeneration, while the role of m6A modifications in corneal injury repair remains unknown. In this study, we generated a limbal stem cell-specific METTL3 knockout mouse model and studied the role of m6A in repairing corneal injury caused by alkali burn. The results showed that METTL3 knockout in the limbal stem cells promotes the in vivo cell proliferation and migration, leading to the fast repair of corneal injury. In addition, m6A modification profiling identified stem cell regulatory factors AHNAK and DDIT4 as m6A targets. Our study reveals the essential functions of m6A RNA modification in regulating injury repair and provides novel insights for clinical therapy of corneal diseases.

4.
Front Cell Dev Biol ; 9: 627706, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33681207

RESUMO

RNA N6-methyladenosine is a key step of posttranscriptional modulation that is involved in governing gene expression. The m6A modification catalyzed by Mettl3 has been widely recognized as a critical epigenetic regulation process for tumorigenic properties in various cancer cell lines, including bladder cancer. However, the in vivo function of Mettl3 in bladder cancer remains largely unknown. In our study, we found that ablation of Mettl3 in bladder urothelial attenuates the oncogenesis and tumor angiogenesis of bladder cancer using transgenic mouse model. In addition, conditional knockout of Mettl3 in K14+ bladder cancer stem cell population leads to inhibition of bladder cancer progression. Coupled with the global transcriptome sequencing and methylated RNA immunoprecipitation sequencing results, we showed that deletion of Mettl3 leads to the suppression of tyrosine kinase endothelial (TEK) and vascular endothelial growth factor A (VEGF-A) through reduced abundance of m6A peaks on a specific region. In addition, the depletion of Mettl3 results in the decrease in both messenger RNA (mRNA) and protein levels of TEK and VEGF-A in vitro. Taken together, Mettl3-mediated m6A modification is required for the activation of TEK-VEGF-A-mediated tumor progression and angiogenesis. Our findings may provide theoretical basis for bladder cancer treatment targeting Mettl3.

5.
Int J Infect Dis ; 100: 483-489, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32920233

RESUMO

Antibody-dependent enhancement (ADE) exists in several kinds of virus. It has a negative influence on antibody therapy for viral infection. This effect was first identified in dengue virus and has since also been described for coronavirus. To date, the rapid spread of the newly emerged coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing coronavirus disease 2019 (COVID-19), has affected over 3.8 million people across the globe. The novel coronavirus poses a great challenge and has caused a wave of panic. In this review, antibody-dependent enhancements in dengue virus and two kinds of coronavirus are summarized. Possible solutions for the effects are reported. We also speculate that ADE may exist in SARS-CoV-2.


Assuntos
Anticorpos Facilitadores , Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Pneumonia Viral/imunologia , Betacoronavirus/patogenicidade , COVID-19 , Infecções por Coronavirus/virologia , Vírus da Dengue/imunologia , Vírus da Dengue/patogenicidade , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2 , Vacinas Virais/imunologia
6.
Mol Ther Methods Clin Dev ; 18: 367-375, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32665963

RESUMO

The coronavirus disease 2019 (COVID-19) is a new type of pneumonia caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. COVID-19 is affecting millions of patients, and the infected number keeps increasing. SARS-CoV-2 is highly infectious, has a long incubation period, and causes a relatively high death rate, resulting in severe health problems all over the world. Currently there is no effective proven drug for the treatment of COVID-19; therefore, development of effective therapeutic drugs to suppress SARS-CoV-2 infection is urgently needed. In this review, we first summarize the structure and genome features of SARS-CoV-2 and introduce its infection and replication process. Then, we review the clinical symptoms, diagnosis, and treatment options of COVID-19 patients. We further discuss the potential molecular targets and drug development strategies for treatment of the emerging COVID-19. Finally, we summarize clinical trials of some potential therapeutic drugs and the results of vaccine development. This review provides some insights for the treatment of COVID-19.

7.
Peptides ; 130: 170328, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32380200

RESUMO

An outbreak caused by 2019 novel coronavirus (2019-nCoV) was first identified in Wuhan City, Hubei Province, China. The new virus was later named SARS-CoV-2. The virus has affected tens of thousands of patients in the world. The infection of SARS-CoV-2 causes severe pneumonia and even death. It is urgently needed to find a therapeutic method to treat patients with SARS-CoV-2 infection. Studies showed that the surface spike (S) protein is essential for the coronavirus binding and entry of host cells. The heptad repeats 1 and 2 (HR1 and HR2) in the S protein play a decisive role in the fusion of the viral membrane with the host cell membrane. We predicted the HR1 and HR2 regions in S protein by sequence alignment. We simulated a computational model of HR1/2 regions and the fusion core. The binding energy of HR1 and HR2 of the fusion core was -33.4 kcal/mol. We then designed antivirus peptides by molecular dynamics simulation of the fusion core. The binding energy of HR2-based antiviral peptide to HR1 was -43.0 kcal/mol, which was stronger than the natural stage of the fusion core, suggesting that the predicted antiviral peptide can competitively bind with HR1 to prevent forming of the fusion core. The antiviral peptides can prevent SARS-CoV-2 membrane fusion and can potentially be used for the prevention and treatment of infections.


Assuntos
Betacoronavirus/metabolismo , Infecções por Coronavirus/tratamento farmacológico , Desenho de Fármacos , Peptídeos/uso terapêutico , Pneumonia Viral/tratamento farmacológico , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Sequência de Aminoácidos , Antivirais/uso terapêutico , COVID-19 , Simulação por Computador , Humanos , Fusão de Membrana , Simulação de Dinâmica Molecular , Pandemias , Estrutura Secundária de Proteína , SARS-CoV-2 , Alinhamento de Sequência , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas do Envelope Viral/antagonistas & inibidores , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...