Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Plant J ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38887937

RESUMO

Grain weight, grain number per panicle, and the number of panicles are the three factors that determine rice (Oryza sativa L.) yield. Of these, grain weight, which not only directly determines rice yield but also influences appearance and quality, is often considered the most important for rice production. Here, we describe OsNF-YC1, a member of the NF-Y transcription factor family that regulates rice grain size. OsNF-YC1 knockout plants (osnf-yc1), obtained using CRISPR-Cas9 technology, showed reduced grain weight due to reduced width and thickness, with no change in grain length, leading to a slenderer grain shape. Downregulation of OsNF-YC1 using RNA interference resulted in similar grain phenotypes as osnf-yc1. OsNF-YC1 affects grain formation by regulating both cell proliferation and cell expansion. OsNF-YC1 localizes in both the nucleus and cytoplasm, has transcriptional activation activity at both the N-terminus and C-terminus, and is highly expressed in young panicles. OsNF-YC1 interacts with OsMADS1 both in vivo and in vitro. Further analysis showed that the histone-like structural CBFD-NFYB-HMF domain of OsNF-YC1 conserved in the OsNF-YC transcription factor family can directly interact with the MADS-box domain of OsMADS1 to enhance its transcriptional activation activity. This interaction positively regulates the expression of OsMADS55, the direct downstream target of OsMADS1. Therefore, this paper reveals a potential grain size regulation pathway controlled by an OsNF-YC1-OsMADS1-OsMADS55 module in rice.

2.
Clin Transl Med ; 14(2): e1564, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38344897

RESUMO

Defective decidualization of endometrial stromal cells (ESCs) in endometriosis (EM) patients leads to inadequate endometrial receptivity and EM-associated infertility. Hypoxia is an inevitable pathological process of EM and participates in deficient decidualization of the eutopic secretory endometrium. Enhancer of zeste homology 2 (EZH2) is a methyltransferase which catalyses H3K27Me3, leading to decreased expression levels of target genes. Although EZH2 expression is low under normal decidualization, it is abundantly increased in the eutopic secretory endometrium of EM and is induced by hypoxia. Chromatin immunoprecipitation-PCR results revealed that decidua marker IGFBP1 is a direct target of EZH2, partially explaining the increased levels of histone methylation modification in defected decidualization of EM. To mechanism controlling this, we examined the effects of hypoxia on EZH2 and decidualization. EZH2 mRNA showed decreased m6 A modification and increased expression levels under hypoxia and decidualization combined treatment. Increased EZH2 expression was due to the increased expression of m6 A demethylase ALKBH5 and decreased expression of the m6 A reader protein YTHDF2. YTHDF2 directly bind to the m6 A modification site of EZH2 to promote EZH2 mRNA degradation in ESCs. Moreover, selective Ezh2 depletion in mouse ESCs increased endometrial receptivity and improved mouse fertility by up-regulating decidua marker IGFBP1 expression. This is the first report showing that YTHDF2 can act as a m6 A reader to promote decidualization by decreasing the stability of EZH2 mRNA and further increasing the expression of IGFBP1 in ESCs. Taken together, our findings highlight the critical role of EZH2/H3K27Me3 in decidualization and reveal a novel epigenetic mechanism by which hypoxia can suppress EM decidualization by decreasing the m6 A modification of EZH2 mRNA.


Assuntos
Endometriose , Infertilidade , Feminino , Humanos , Animais , Camundongos , Endometriose/genética , Endometriose/metabolismo , Histonas/genética , Histonas/metabolismo , RNA/metabolismo , Fatores de Transcrição/metabolismo , RNA Mensageiro/metabolismo , Metilação , Hipóxia/complicações , Hipóxia/genética
3.
IMA Fungus ; 15(1): 2, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336758

RESUMO

Ophiocordyceps sinensis is a famous traditional Chinese medicine adapted to the alpine environment of the Qinghai-Tibet Plateau and adjacent regions. Clarification of the species diversity of Ophiocordyceps sinensis and its relatives could expand the traditional medicinal resources and provide insights into the speciation and adaptation. The study is prompted by the discovery of a new species, O. megala, described here from a biodiversity hotspot in the Hengduan Mountains, China. Combined morphological, ecological, and phylogenetic evidence supports its distinctiveness from O. sinensis, O. xuefengensis, and O. macroacicularis. Additionally, based on the phylogenetic construction of Ophiocordyceps, a special clade was focused phylogenetically on the more closely related O. sinensis complex, which was defined as the O. sinensis- species complex lineage. A total of 10 species were currently confirmed in this lineage. We made a comprehensive comparison of the sexual/asexual morphological structures among this species complex, distinguishing their common and distinctive features. Furthermore, using the method of species distribution modelling, we studied the species ocurrences in relation to climatic, edaphic, and altitudinal variables for the eight species in the O. sinensis-species complex, and determined that their potential distribution could extend from the southeastern Qinghai-Tibet Plateau to the Xuefeng Mountains without isolating barrier. Thus, the biodiversity corridor hypothesis was proposed around the O. sinensis-species complex. Our study highlights the phylogeny, species diversity, and suitable distribution of the O. sinensis-species complex lineage, which should have a positive implication for the resource discovery and adaptive evolution of this unique and valuable group.

4.
Microb Ecol ; 86(4): 3043-3056, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37831075

RESUMO

Recalcitrant dissolved organic carbon (RDOC) produced by microbial carbon pumps (MCPs) in the ocean is crucial for carbon sequestration and regulating climate change in the history of Earth. However, the importance of microbes on RDOC formation in terrestrial aquatic systems, such as rivers and lakes, remains to be determined. By integrating metagenomic (MG) and metatranscriptomic (MT) sequencing, we defined the microbial communities and their transcriptional activities in both water and silt of a typical karst river, the Lijiang River, in Southwest China. Betaproteobacteria predominated in water, serving as the most prevalent population remodeling components of dissolved organic carbon (DOC). Binning method recovered 45 metagenome-assembled genomes (MAGs) from water and silt. Functional annotation of MAGs showed Proteobacteria was less versatile in degrading complex carbon, though cellulose and chitin utilization genes were widespread in this phylum, whereas Bacteroidetes had high potential for the utilization of macro-molecular organic carbon. Metabolic remodeling revealed that increased shared metabolites within the bacterial community are associated with increased concentration of DOC, highlighting the significance of microbial cooperation during producing and remodeling of carbon components. Beta-oxidation, leucine degradation, and mevalonate (MVA) modules were significantly positively correlated with the concentration of RDOC. Blockage of the leucine degradation pathway in Limnohabitans and UBA4660-related MAGs were associated with decreased RDOC in the karst river, while the Fluviicola-related MAG containing a complete leucine degradation pathway was positively correlated with RDOC concentration. Collectively, our study revealed the linkage between bacteria metabolic processes and carbon sequestration. This provided novel insights into the microbial roles in karst-rivers carbon sink.


Assuntos
Sequestro de Carbono , Rios , Rios/química , Matéria Orgânica Dissolvida , Leucina/metabolismo , Multiômica , Carbono/metabolismo , Bactérias/genética , Bactérias/metabolismo , Água/metabolismo
5.
Reprod Biomed Online ; 47(5): 103253, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37677924

RESUMO

RESEARCH QUESTION: What is the effect of miR-122 on the progression and recovery of fibrosis in Asherman's syndrome? DESIGN: Endometrial tissue was collected from 21 patients, 11 with intrauterine adhesion (IUA) and 10 without IUA. Quantitative real-time polymerase chain reaction, immunofluorescence and Western blot were applied to observe the expression of mRNAs/miRNAs and protein, respectively. The endometrial physical injury was carried out in C57BL/6 mice to create an endometrial fibrosis model, with intrauterine injection of adenovirus to compare the antifibrosis and repair function of miR-122 on endometrium. The morphology of the uterus was observed using haematoxylin and eosin staining, and fibrosis markers were detected by immunohistochemistry. RESULTS: miR-122 expression was reduced in patients with IUAs, accompanied by fibrosis. MiR-122 overexpression reduced the degree of fibrosis in endometrial stromal cells. Further molecular analyses demonstrated that miR-122 inhibited fibrosis through the TGF-ß/SMAD pathway by directly targeting the 3' untranslated region of SMAD family member 3, suppressing its expression. Notably, miR-122 promoted endometrial regeneration and recovery of pregnancy capacity in a mouse endometrial injury model. CONCLUSIONS: miR-122 is a critical regulator for repair of endometrial fibrosis and provided new insight for the clinical treatment of intrauterine adhesions.


Assuntos
Ginatresia , MicroRNAs , Doenças Uterinas , Camundongos , Animais , Feminino , Gravidez , Humanos , Fator de Crescimento Transformador beta/metabolismo , Camundongos Endogâmicos C57BL , Doenças Uterinas/genética , Doenças Uterinas/patologia , Endométrio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Aderências Teciduais , Modelos Animais de Doenças , Fibrose
6.
J Pathol ; 260(3): 248-260, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36992523

RESUMO

Endometriosis is a common gynecological disorder that causes female infertility. Our recent research found that excessive oxidative stress in ovaries of endometriosis patients induced senescence of cumulus granulosa cells. Here, we analyzed the transcriptomic and metabolomics profiles of follicles in a mouse model of endometriosis and in patients with endometriosis and investigated the potential function of changed metabolites in granulosa cells. RNA-sequencing indicated that both endometriosis lesions and oxidative stress in mice induced abnormalities of reactive oxidative stress, steroid hormone biosynthesis, and lipid metabolism. The mouse model and women with endometriosis showed altered lipid metabolism. Nontargeted metabolite profiling of follicular fluid from endometriosis and male-factor infertility patients by liquid chromatography mass spectrometry identified 55 upregulated and 67 downregulated metabolites. These differential metabolites were mainly involved in steroid hormone biosynthesis and glycerophospholipid metabolism. Phosphatidylinositol (PI 16:0/18:2) was significantly elevated in follicular fluid from endometriosis patients compared with controls (p < 0.05), while lysophosphatidylinositol (LPI 18:2, 20:2, 18:1, 20:3 and 18:3) was reduced (p < 0.05). Upregulated PI and downregulated LPI correlated with oocyte retrieval number and mature oocyte number. LPI inhibited cellular reactive oxidative stress induced by hemin in granulosa cells. Cell proliferation inhibition, senescence, and apoptosis induced by hemin were partially reversed by LPI. Moreover, LPI administration rescued hemin blocking of cumulus-oocyte complex expansion and stimulated expression of ovulation-related genes. Transcriptomic Switching mechanism at 5' end of the RNA transcript sequencing and western blot revealed that LPI effects on granulosa cells were associated with its regulation of MAPK-ERK1/2 signaling, which was suppressed in the presence of hemin. In conclusion, our results revealed the dysregulation of lipid metabolism in endometriotic follicles. LPI may represent a novel agent for in vitro follicular culture that reverses the excessive oxidative stress from endometriotic lesions. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Endometriose , Infertilidade , Humanos , Feminino , Masculino , Animais , Camundongos , Endometriose/metabolismo , Transcriptoma , Hemina/metabolismo , Metabolômica , Infertilidade/complicações , Metabolismo dos Lipídeos , RNA/metabolismo , Esteroides , Hormônios
7.
Microb Drug Resist ; 29(5): 175-189, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35939307

RESUMO

Ethambutol (EMB) is used in combination with isoniazid and rifampicin for the treatment of tuberculosis caused by Mycobacterium tuberculosis. However, the incidence of EMB resistance is alarming. The EMB targets the cell wall arabinan biosynthesis. It is important to comprehensively understand the molecular basis of EMB to slow down the drug resistance rate of EMB. This study summarized the genes implicated in EMB resistance, regulatory network and the pharmacoproteomic effect of EMB in M. tuberculosis. Many of the genes related to EMB are implicated in membrane components, drug efflux, lipid metabolism, ribosome, and detoxification. The differential response model may help to design a novel anti-tuberculosis antibiotic.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Etambutol/farmacologia , Mycobacterium tuberculosis/genética , Antituberculosos/farmacologia , Testes de Sensibilidade Microbiana , Tuberculose/tratamento farmacológico , Farmacorresistência Bacteriana/genética
8.
Endocrinology ; 164(2)2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36524678

RESUMO

The mechanism by which endometriosis, a common gynecological disease characterized by chronic pelvic pain and infertility, causes infertility remains elusive. Luteinized unruptured follicle syndrome, the most common type of ovulatory dysfunction, is a cause of endometriosis-associated infertility involving reduced numbers of retrieved and mature oocytes. Ovulation is controlled by luteinizing hormone and paracrine signals produced within the follicle microenvironment. Generally, interleukin (IL)-1ß is elevated in endometriosis follicular fluid, whereby it amplifies ovulation signals by activating extracellular-regulated kinase 1/2 and CCAAT/enhancer binding protein ß pathways. However, this amplification of ovulation by IL-1ß does not occur in patients with endometriosis. To illuminate the mechanism of ovulatory dysfunction in endometriosis, we analyzed the effect of oxidative stress and IL-1ß expression on endometriosis follicles. We found that oxidative stress decreased EZH2 expression and reduced H3K27Me3 levels in endometriosis ovarian granulosa cells (GCs). Selective Ezh2 depletion in mice ovarian GCs reduced fertility by disturbing cumulus-oocyte complex expansion and reducing epidermal growth factor-like factor expression. Gene expression and H3K27Me3 ChIP-sequencing (ChIP-Seq) of GCs revealed IL-1 receptor 2 (IL-1R2), a high-affinity IL-1ß-receptor that suppresses IL-1ß-mediated inflammatory cascades during ovulation, as a crucial target gene of the EZH2-H3K27Me3 axis. Moreover, IL-1ß addition did not restore ovulation upon Ezh2 knockdown, indicating a vital function of IL-1R2 in endometriosis. Thus, our findings show that reducing EZH2 and H3K27Me3 in GCs suppressed ovulatory signals by increasing IL-1R2 expression, which may ultimately contribute to endometriosis-associated infertility.


Assuntos
Endometriose , Infertilidade Feminina , Animais , Feminino , Camundongos , Endometriose/complicações , Endometriose/genética , Endometriose/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Células da Granulosa/metabolismo , Histonas/metabolismo , Infertilidade Feminina/genética , Infertilidade Feminina/metabolismo , Receptores Tipo II de Interleucina-1/genética , Receptores Tipo II de Interleucina-1/metabolismo , Humanos
9.
J Reprod Immunol ; 152: 103649, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35714422

RESUMO

Endometriosis (EMs) is a common gynecological disease whose pathogenesis remains unclear. Immunological factors have been a key hotspot in recent years. Peritoneal fluid samples from women with EMs show defectively activated macrophages (MΦs) and strong NOD-like receptor family pyrin domain containing 3 (NLRP3) expression. Activated MΦs secrete interleukin 1ß, which stimulates migration of endometrial stromal cells (ESCs) and promotes accumulation of extracellular matrix. Levels of interleukin 1ß in peritoneal fluid were significantly higher in patients with stage III-IV EMs compared with stage I-II EMs. We also found that the size and weight of endometrial lesions in NLRP3-/- mice were significantly lower than those of wild-type mice, and this phenomenon was reversed by intraperitoneally injecting peritoneal MΦs derived from wild-type mice. Moreover, we observed that the NLRP3 inflammasome was activated in MΦs by crosstalk between MΦs and ESCs. Targeted inhibition of NLRP3 significantly reduced lesion development in vivo and suppressed the migration ability of ESCs in vitro. Collectively, these findings suggest that the occurrence of EMs may be associated with the interaction between MΦs and ESCs.


Assuntos
Endometriose , Animais , Feminino , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais , Células Estromais
10.
Antioxidants (Basel) ; 11(3)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35326196

RESUMO

Mycobacterium abscessus is one of the common clinical non-tuberculous mycobacteria (NTM) that can cause severe skin infection. 5-Aminolevulinic acid photodynamic therapy (ALA_PDT) is an emerging effective antimicrobial treatment. To explore whether ALA_PDT can be used to treat M. abscessus infections, we conducted a series of experiments in vitro. We found that ALA_PDT can kill M. abscesses. Mechanistically, we found that ALA_PDT promoted ferroptosis-like death of M. abscesses, and the ROS scavenger N-Acetyl-L-cysteine (NAC) and ferroptosis inhibitor Ferrostatin-1 (Fer-1) can mitigate the ALA_PDT-mediated sterilization. Furthermore, ALA_PDT significantly up-regulated the transcription of heme oxygenase MAB_4773, increased the intracellular Fe2+ concentration and altered the transcription of M. abscessus iron metabolism genes. ALA_PDT disrupted the integrity of the cell membrane and enhanced the permeability of the cell membrane, as evidenced by the boosted sterilization effect of antibiotics. In summary, ALA_PDT can kill M. abscesses via promoting the ferroptosis-like death and antibiotic sterilization through oxidative stress by changing iron metabolism. The study provided new mechanistic insights into the clinical efficacy of ALA_PDT against M. abscessus.

11.
Front Endocrinol (Lausanne) ; 13: 825934, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295989

RESUMO

The outcomes of in vitro fertilization (IVF) for endometriotic women are significantly worse than for patients without ovarian endometriosis (OEM), as shown by fewer retrieved oocytes. However, the exact pathophysiological mechanism is still unknown. Thus, we conducted a prospective study that analyzed mRNA and lncRNA transcriptome between granulosa cells (GCs) from patients with fewer retrieved oocytes due to OEM and GCs from controls with male factor (MF) infertility using an RNA sequencing approach. We found a group of significantly differentially expressed genes (DEGs), including NR5A2, MAP3K5, PGRMC2, PRKAR2A, DEPTOR, ITGAV, KPNB1, GPC6, EIF3A, and SMC5, which were validated to be upregulated and negatively correlated with retrieved oocyte numbers in GCs of patients with OEM, while DUSP1 demonstrated the opposite. The molecular functions of these DEGs were mainly enriched in pathways involving mitogen-activated protein kinase (MAPK) signaling, Wnt signaling, steroid hormone response, apoptosis, and cell junction. Furthermore, we performed lncRNA analysis and identified a group of differentially expressed known/novel lncRNAs that were co-expressed with the validated DEGs and correlated with retrieved oocyte numbers. Co-expression networks were constructed between the DEGs and known/novel lncRNAs. These distinctive molecular signatures uncovered in this study are involved in the pathological regulation of ovarian reserve dysfunction in OEM patients.


Assuntos
Endometriose , Infertilidade Masculina , RNA Longo não Codificante , Endometriose/patologia , Feminino , Fertilização in vitro , Células da Granulosa/metabolismo , Humanos , Infertilidade Masculina/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Estudos Prospectivos , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
Microbiol Res ; 258: 126917, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35190346

RESUMO

Scutellaria tsinyunensis is an endangered plant under extremely critical condition. Soil microbiome is important for plants growth. To better understand the endangered mechanism of S. tsinyunensis from the perspective of rhizosphere bacteria, we examined soil bacteria community in nearly all extant S. tsinyunensis populations at two altitude levels through high-throughput sequencing. Our co-occurrence network analysis manifested six key genera had active interactions with many genera. Moreover, we found that deterministic processes dominate rhizosphere bacterial community assembly. By constructing structural equation model, we found that pH as a key factor shaping the bacterial community, suggesting canopy density - pH - bacterial diversity regulatory model may contribute to the endangerment of S. tsinyunensis. Further, we revealed that Haliangium and Candidatus Koribacter act as essential genera for the protection of S. tsinyunensis through controlling multi combination of covariates. Together, our study revealed a holistic picture of rhizosphere microbiome and environmental factors associated with S. tsinyunensis, and provided direction for future protection of this endangered plant.


Assuntos
Microbiota , Scutellaria , Animais , Bactérias/genética , Espécies em Perigo de Extinção , Raízes de Plantas/microbiologia , Rizosfera , Solo/química , Microbiologia do Solo
13.
Reprod Sci ; 29(3): 723-733, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34981457

RESUMO

The cause of endometriosis, which is characterized by the existence of functional endometrial tissue outside the uterine cavity, is poorly understood. Seminal plasma (SP) is rich in multiple cytokines that may promote endometrial tissue survival. Here, we evaluated the effect of SP on growth of endometrial mesenchymal stem cells (MSCs) from women with endometriosis (E-MSCs) and women without endometriosis (NE-MSCs). Proliferation, cell foci formation, cell cycle progression, and growth marker expression of E- and NE-MSCs were promoted by SP. These effects may be mediated through activation of transforming growth factor beta 1 (TGF-ß1), Akt, and p42/44 signaling, which enhances CDK2 and CDK6 expression and accelerates cell cycle progression. Xenografts exposed to SP exhibited a three-fold increase in volume and four-fold increase in weight after 14 days. Our findings demonstrate that TGF-ß1 in SP may promote endometrial tissue survival which will allow us to understand the pathogenesis and develop novel approaches for prevention and therapies of endometriosis.


Assuntos
Endometriose/metabolismo , Endométrio/citologia , Células-Tronco Mesenquimais/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sêmen/química , Fator de Crescimento Transformador beta1/metabolismo , Adulto , Animais , Biomarcadores/metabolismo , Ciclo Celular/fisiologia , Proliferação de Células , Células Cultivadas , Citocinas/metabolismo , Endometriose/patologia , Feminino , Humanos , Camundongos , Transdução de Sinais
14.
Mycobiology ; 49(4): 297-307, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512076

RESUMO

A cordycipitoid fungus infecting Hepialidae sp. in Nepal was supposed to be identical to Cordyceps liangshanensis, originally described from southwestern China, and thus, transferred to the genus Metacordyceps or Papiliomyces in previous studies. However, our multi-gene (nrSSU-nrLSU-tef-1α-rpb1-rpb2) phylogenetic and morphological studies based on the type specimen and additional collections of C. liangshanensis revealed that the fungus belongs to the genus Ophiocordyceps (Ophiocordycipitaceae). Therefore, a new combination O. liangshanensis was made, and a detailed description of this species was provided.

15.
Mol Med Rep ; 24(3)2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34278456

RESUMO

The pathological expression and function of lactate dehydrogenase A (LDHA), a key enzyme that converts pyruvate into lactic acid during glycolysis, remains unknown in endometriosis. In the present study, LDHA expression in tissue samples was determined by immunohistochemistry. To examine whether LDHA was induced by hypoxia, primary cultured endometrial stromal cells (ESCs) and glandular epithelial Ishikawa cells were exposed to 1% O2 (hypoxia) or 21% O2 (normoxia). Cellular functions were assessed by flow cytometry, Transwell and Cell Counting Kit­8 assays in LDHA­silenced ESCs and Ishikawa cells. Mitochondrial functions were evaluated using mitochondrial membrane potential JC­1 staining, reactive oxygen species flow cytometric analysis and ATP detection. Additionally, lactic acid production was examined and western blotting was used to evaluate the expression levels of proteins associated with apoptosis, cell cycle and glycolysis, as well as regulatory proteins involved in epithelial­mesenchymal transformation and glycolytic pathways. LDHA was localized to endometrial glandular cells and stromal cells. However, LDHA protein expression was higher in endometriotic lesions compared with that in normal and eutopic endometria. LDHA expression levels in ectopic glandular cells were higher during the proliferative stage compared with during the secretory stage. Hypoxia treatment of Ishikawa cells and ESCs markedly induced the mRNA and protein expression of LDHA. Silencing of LDHA expression in Ishikawa cells and THESC cells significantly promoted impaired mitochondrial function and apoptosis while inhibiting migration and glycolysis. However, it had no obvious effect on proliferation. In conclusion, the present study revealed that LDHA was highly expressed in endometriotic tissues, where it may serve a notable role in the occurrence and development of endometriosis.


Assuntos
Apoptose/efeitos dos fármacos , Endometriose/tratamento farmacológico , Hipóxia/induzido quimicamente , Lactato Desidrogenase 5/metabolismo , Lactato Desidrogenase 5/farmacologia , Substâncias Protetoras/farmacologia , Adulto , Proliferação de Células , Endometriose/patologia , Endométrio/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Feminino , Glicólise , Humanos , L-Lactato Desidrogenase/metabolismo , Lactato Desidrogenase 5/genética , Ácido Láctico/metabolismo , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células Estromais/metabolismo
16.
Stem Cell Res Ther ; 12(1): 420, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294152

RESUMO

BACKGROUND: Unresponsive thin endometrium caused by Asherman syndrome (AS) is the major cause of uterine infertility. However, current therapies are ineffective. This study is to evaluate the effect of transplantation with collagen scaffold/umbilical cord mesenchymal stem cells (CS/UC-MSCs) on this refractory disease. METHODS: Eighteen infertile women with unresponsive thin endometrium, whose frozen-thawed embryo transfers (FETs) were cancelled due to reduced endometrial thickness (ET ≤ 5.5 mm), were enrolled in this before and after self-control prospective study. Hysteroscopic examination was performed to confirm no intrauterine adhesions, then twenty million UC-MSCs loaded onto a CS were transplanted into the uterine cavity in two consecutive menstrual cycles. Then uterine cavity was assessed through hysteroscopy after two transplants. FETs were performed in the following cycle. Pregnancy outcomes were followed up. Endometrial thickness, uterine receptivity and endometrial angiogenesis, proliferation and hormone response were compared before and after treatment. RESULTS: Sixteen patients completed the study. No treatment-related serious adverse events occurred. Three months after transplantation, the average ET increased from 4.08 ± 0.26 mm to 5.87 ± 0.77 mm (P < 0.001). Three of 15 patients after FET got pregnant, of whom 2 gave birth successfully and 1 had a miscarriage at 25 weeks' gestation. One of 2 patients without FET had a natural pregnancy and gave birth normally after transplantation. Immunohistochemical analysis showed increased micro-vessel density, upregulated expression of Ki67, estrogen receptor alpha, and progesterone receptor, indicating an improvement in endometrial angiogenesis, proliferation, and response to hormones. CONCLUSION: CS/UC-MSCs is a promising and potential approach for treating women with unresponsive thin endometrium caused by AS. TRIAL REGISTRATION: ClinicalTrials.gov NCT03724617 . Registered on 26 October 2018-prospectively registered, https://register.clinicaltrials.gov/.


Assuntos
Ginatresia , Infertilidade Feminina , Células-Tronco Mesenquimais , Colágeno , Endométrio , Feminino , Ginatresia/terapia , Humanos , Infertilidade Feminina/terapia , Projetos Piloto , Gravidez , Estudos Prospectivos , Cordão Umbilical
17.
Front Cell Dev Biol ; 9: 682060, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34164401

RESUMO

Cyclophosphamide (CTX) is widely used in various cancer therapies and in immunosuppression, and patients can still have babies after CTX chemotherapy. CTX directly causes primordial follicle loss with overactivation and DNA damage-induced apoptosis. Previous studies have shown that maternal exposure to CTX before conception increases the incidence of birth abnormalities and alters the methylation of genes in the oocytes of offspring. Mice were treated with a single dose of CTX (100 mg/kg) at post-natal day 21 and sacrificed 47 days later when primordial follicles surviving chemotherapy developed to the antral stage. Acute DNA damage and acceleration of the activation of primordial follicles after CTX treatment were repaired within several days, but the remaining follicle numbers remarkably decrease. Although partial surviving primordial follicle were developed to mature oocyte, oocyte quality hemostasis was impaired exhibiting aberrant meiosis progression, abnormal spindle and aneuploidy, mitochondrial dysfunction and increased endoplasmic reticulum stress. Thereafter, embryo development competency significantly decreased with fewer blastocyst formation after CTX exposure. CTX treatment resulted in alteration of DNA methylations and histone modifications in fully grown GV oocytes. Single-cell RNA-seq revealed CTX treatment suppressed multiple maternal genes' transcription including many methyltransferases and maternal factor YAP1, which probably accounts for low quality of CTX-repaired oocyte. In vitro addition of lysophosphatidic acid (LPA) to embryo culture media to promote YAP1 nuclear localization improved CTX-repaired embryo developmental competence. This study provides evidence for the consistent toxic effect of CTX exposure during follicle development, and provide a new mechanism and new insights into future clinical interventions for fertility preservation.

18.
Cancer Med ; 10(13): 4510-4521, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34076346

RESUMO

BACKGROUND: The Sonic Hedgehog (SHH) signaling pathway plays an important role in various types of human cancers including ovarian cancer; however, its function and underlying mechanism in ovarian cancer are still not entirely understood. METHODS: We detected the expressions of SHH and SQSTM1 in borderline ovarian tumor tissues, epithelial ovarian cancer (EOC) tissues and benign ovarian tumor tissues. Cyclopamine (Cyp, a well-known inhibitor of SHH signaling pathway) and chloroquine (CQ, the pharmaceutical inhibitor of autophagy) were used in vivo and in vitro (autophagic flux, CCK-8 assay, wound healing assay, transwell assay, tumor xenograft model). The mechanism of action was explored through Quantitative RT-PCR and Western Blot. RESULTS: We found up-regulation of SHH and accumulation of SQSTM1/P62 in epithelial ovarian cancer. Cyp induced autophagy through the PI3K/AKT signaling pathway. Moreover, low-dose Cyp and chloroquine (CQ) significantly promoted the migratory ability of SKOV3 cells. CONCLUSIONS: Our findings suggest that inhibition of the SHH pathway and autophagy may be a potential and effective therapy for the treatment of ovarian cancer.


Assuntos
Morte Celular Autofágica/fisiologia , Carcinoma Epitelial do Ovário/metabolismo , Movimento Celular/fisiologia , Proteínas Hedgehog/metabolismo , Neoplasias Ovarianas/metabolismo , Proteína Sequestossoma-1/metabolismo , Animais , Morte Celular Autofágica/efeitos dos fármacos , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Cloroquina/farmacologia , Feminino , Proteínas Hedgehog/antagonistas & inibidores , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Ovarianas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regulação para Cima , Alcaloides de Veratrum/farmacologia
19.
Mol Hum Reprod ; 27(6)2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-33944929

RESUMO

Oocyte IVM technology is an option for fertility preservation in some groups of patients, such as those with polycystic ovary syndrome, patients with ovarian hyperstimulation syndrome, and for patients with cancer. However, the developmental potential of oocytes from IVM still needs to improve. Several previous studies have reported that lysophosphatidic acid (LPA) promotes glucose metabolism, cumulus cell (CC) expansion, and oocyte nuclear maturation. However, the effect of LPA on oocyte cytoplasmic maturation, particularly mitochondrial function, has rarely been studied and the underlying mechanism is largely unknown, which impedes (pre)clinical applications of LPA. In this study, cumulus-oocyte complexes (COCs) and cumulus-denuded germinal vesicle oocytes (DOs) were treated with various concentrations of LPA during IVM, in the presence or absence of the oxidative stressor cyclophosphamide (CTX). In both normal and CTX-damaged COCs, the 25 µM LPA group exhibited improved CC expansion capacity, a higher nuclear maturation rate, and superior mitochondrial function, compared to no LPA treatment. When the concentration of LPA was over 40 µM, detrimental effects of LPA on oocyte maturation occurred. Compared with COCs, the addition of LPA slightly improved oocyte nuclear and cytoplasmic maturation of DOs, but this was not statistically significant. We observed that LPA promotes the activation of extracellular signal-regulated kinase (ERK)1/2, although this was not statistically significant in DOs. Furthermore, LPA could not reverse the negative effect of CC expansion and mitochondrial function after inactivation of ERK1/2 by U0126. RNA-sequencing and RT-PCR results showed that LPA upregulated several ERK1/2 downstream genes related to CC expansion, such as Areg, Cited4, and Ptgs2. This study demonstrates that LPA improves oocyte quality during IVM through the activation of ERK1/2 pathway CCs and oocytes, which provides evidence for the potential addition of LPA to IVM medium.


Assuntos
Células do Cúmulo/efeitos dos fármacos , Técnicas de Maturação in Vitro de Oócitos/métodos , Lisofosfolipídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Sequência de Bases , Núcleo Celular/metabolismo , Meios de Cultura/farmacologia , Células do Cúmulo/metabolismo , Ciclofosfamida/toxicidade , Citoplasma/metabolismo , Ativação Enzimática , Feminino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Oócitos/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Reprodutibilidade dos Testes , Regulação para Cima/efeitos dos fármacos
20.
Microb Pathog ; 153: 104778, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33548483

RESUMO

Mycobacterium tuberculosis (Mtb) infection is the major cause of tuberculosis. Mtb regions of difference (RD) genes are vital for survival of the pathogen within hosts and for the attenuation of the bacillus Calmette-Guérin vaccine. However, the function of most RD proteins largely remains unexplored. In the present study, we focused on Rv1515c, an RD6 member from M. tuberculosis, and characterised it as a cell surface-associated protein that functions in disrupting the cytokine profile and promoting endoplasmic reticulum stress-mediated apoptosis. Rv1515c expression in M. smegmatis, a nonpathogenic species, resulted in enhanced resistance of the bacterium to various in vitro stressors (such as low pH, sodium dodecyl sulfate, oxidative pressure, and nitrogen intermediate) and its cellular survival within macrophages. Our study is the first to identify the role of Rv1515c in the physiology and pathogenesis of mycobacterium.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Proteínas de Bactérias/genética , Interações Hospedeiro-Patógeno , Humanos , Macrófagos , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...