Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 10: 1072942, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532587

RESUMO

During the heterotrophic cultivation of microalgae, a cooled process against temperature rise caused by the metabolism of exogenous organic carbon sources greatly increases cultivation cost. Furthermore, microalgae harvesting is also a cost-consuming process. Cell harvesting efficiency is closely related to the characteristics of the algal cells. It may be possible to change cell characteristics through controlling culture conditions to make harvesting easier. In this study, the mesophilic Chlorella pyrenoidosa was found to be a thermal-tolerant species in the heterotrophic mode. The cells could maintain their maximal specific growth rate at 40°C and reached 1.45 day-1, which is equivalent to that of cultures at 35°C but significantly higher than those cultured at lower temperatures. Interestingly, the cells cultured at 40°C were much easier to be harvested than those at lower temperatures. The harvesting efficiency of the cells cultured at 40°C reached 96.83% after sedimentation for 240 min, while the cells cultured at lower temperatures were reluctant to settle. Likely, the same circumstance occurred when cells were harvested by centrifugation or flocculation. The promotion of cell harvesting for cells cultured at high temperatures was mainly attributed to increased cell size and decreased cell surface charge. To the best of our knowledge, this is the first report that cells cultured at high temperatures can promote microalgae harvesting. This study explores a new approach to simplify the cultivation and harvesting of microalgae, which effectively reduces the microalgae production cost.

2.
Chemosphere ; 291(Pt 1): 132868, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34767848

RESUMO

Exorbitant substrates for Schizochytrium culture result in the high cost of docosahexaenoic acid (DHA) production. In order to develop a feasible approach that is expected to reduce DHA production cost, Schizochytrium sp. S31 cultivation with a mixture of saline wastewater (SWW) and tofu whey wastewater (TWW) was investigated in this study. Using glucose as the carbon source, the maximum biomass and DHA yield in cultures using mixed wastewater containing 5% SWW reached 19.08 and 2.66 g/L, respectively, which were 2.29 and 2.66 times higher than those of cultures using control medium. Moreover, a good wastewater treatment performance was achieved as approximately 60% of the COD, TN, and TP were reduced in the cultures using mixed wastewater with a SWW ratio of 5%. The mixed wastewater presented better performance on DHA production than control medium using all tested carbon sources including glucose, fructose, and pure and crude glycerol. The components of control medium can be completely replaced by the mixed wastewater and crude glycerol. It is expected to effectively decrease the medium cost for DHA production and reduce the environmental risk of food processing wastewater.


Assuntos
Ácidos Docosa-Hexaenoicos , Estramenópilas , Biomassa , Fermentação , Glicerol , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA