Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Hazard Mater ; 474: 134865, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38861902

RESUMO

With the massive release of microplastics (MPs) into the environment, research related to MPs is advancing rapidly. Effective research methods are necessary to identify the chemical composition, shape, distribution, and environmental impacts of MPs. In recent years, artificial intelligence (AI)-driven machine learning methods have demonstrated excellent performance in analyzing MPs in soil and water. This review provides a comprehensive overview of machine learning methods for the prediction of MPs for various tasks, and discusses in detail the data source, data preprocessing, algorithm principle, and algorithm limitation of applied machine learning. In addition, this review discusses the limitation of current machine learning methods for various task analysis in MPs along with future prospect. Finally, this review finds research potential in future work in building large generalized MPs datasets, designing high-performance but low-computational-complexity algorithms, and evaluating model interpretability.

2.
Comput Biol Med ; 169: 107919, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176212

RESUMO

Skin cancer diagnosis often relies on image segmentation as a crucial aid, and a high-performance segmentation can lower misdiagnosis risks. Part of the medical devices often have limited computing power for deploying image segmentation algorithms. However, existing high-performance algorithms for image segmentation primarily rely on computationally intensive large models, making it challenging to meet the lightweight deployment requirement of medical devices. State-of-the-art lightweight models are not able to capture both local and global feature information of lesion edges due to their model structures, result in pixel loss of lesion edge. To tackle this problem, we propose LeaNet, a novel U-shaped network for high-performance yet lightweight skin cancer image segmentation. Specifically, LeaNet employs multiple attention blocks in a lightweight symmetric U-shaped design. Each blocks contains a dilated efficient channel attention (DECA) module for global and local contour information and an inverted external attention (IEA) module to improve information correlation between data samples. Additionally, LeaNet uses an attention bridge (AB) module to connect the left and right sides of the U-shaped architecture, thereby enhancing the model's multi-level feature extraction capability. We tested our model on ISIC2017 and ISIC2018 datasets. Compared with large models like ResUNet, LeaNet improved the ACC, SEN, and SPEC metrics by 1.09 %, 2.58 %, and 1.6 %, respectively, while reducing the model's parameter number and computational complexity by 570x and 1182x. Compared with lightweight models like MALUNet, LeaNet achieved improvements of 2.07 %, 4.26 %, and 3.11 % in ACC, SEN, and SPEC, respectively, reducing the parameter number and computational complexity by 1.54x and 1.04x.


Assuntos
Neoplasias Cutâneas , Humanos , Pele , Algoritmos , Benchmarking , Processamento de Imagem Assistida por Computador
3.
IEEE Internet Things J ; 9(20): 20422-20430, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36415479

RESUMO

Studying networked systems in a variety of domains, including biology, social science, and Internet of Things, has recently received a surge of attention. For a networked system, there are usually multiple types of interactions between its components, and such interaction-type information is crucial since it always associated with important features. However, some interaction types that actually exist in the network may not be observed in the metadata collected in practice. This article proposes an approach aiming to detect previously undiscovered interaction types (PUITs) in networked systems. The first step in our proposed PUIT detection approach is to answer the following fundamental question: is it possible to effectively detect PUITs without utilizing metadata other than the existing incomplete interaction-type information and the connection information of the system? Here, we first propose a temporal network model which can be used to mimic any real network and then discover that some special networks which fit the model shall a common topological property. Supported by this discovery, we finally develop a PUIT detection method for networks which fit the proposed model. Both analytical and numerical results show this detection method is more effective than the baseline method, demonstrating that effectively detecting PUITs in networks is achievable. More studies on PUIT detection are of significance and in great need since this approach should be as essential as the previously undiscovered node-type detection which has gained great success in the field of biology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...