Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(25): 11063-11073, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38869036

RESUMO

Rhizosphere iron plaques derived from Fe-based nanomaterials (NMs) are a promising tool for sustainable agriculture. However, the requirement for flooded conditions to generate iron plaque limits the scope of the NM application. In this study, we achieved in situ Fenton oxidation of a highly chlorinated persistent organic pollutant (2,2',4,5,5'-pentachlorobiphenyl, PCB101) through iron plaque mediated by the interaction between α-Fe2O3 NMs and plant-rhizobacteria symbionts under dryland conditions. Mechanistically, the coexistence of α-Fe2O3 NMs and Pseudomonas chlororaphis JD37 stimulated alfalfa roots to secrete acidic and reductive agents as well as H2O2, which together mediated the rhizosphere Fenton reaction and converted α-Fe2O3 NMs into iron plaque rich in Fe(II)-silicate. Further verifications reproduced the Fenton reaction in vitro using α-Fe2O3 NMs and rhizosphere compounds, confirming the critical role of •OH in the oxidative degradation of PCB101. Significant reductions in PCB101 content by 18.6%, 42.9%, and 23.2% were respectively found in stem, leaf, and soil after a 120-d treatment, proving the effectiveness of this NMs-plant-rhizobacteria technique for simultaneously safe crop production and soil remediation. These findings can help expand the potential applications of nanobio interaction and its mediated iron plaque generation for both agricultural practice and soil remediation.


Assuntos
Ferro , Poluentes do Solo , Ferro/metabolismo , Poluentes do Solo/metabolismo , Nanoestruturas/química , Compostos Férricos , Solo/química , Rizosfera
2.
Environ Sci Technol ; 57(34): 12771-12781, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37583057

RESUMO

Plant growth promoting rhizobacteria (PGPR) produce extracellular reactive oxygen species (ROS) to protect plants from external stresses. Fe-based nanomaterials can potentially interact with PGPR and synergistically degrade organic pollutants, yet they have received no study. Here, we studied how the interaction between a typical PGPR (Pseudomonas chlororaphis, JD37) and Fe-based nanomaterials facilitated the degradation of 2,4,4'-trichlorobiphenyl (PCB28), by comparing the zerovalent iron of 20 nm (nZVI20), 100 nm (nZVI100), and 5 µm; iron oxide nanomaterials (α-Fe2O3, γ-Fe2O3, and Fe3O4) of ca. 20 nm; and ferrous and ferric salts. Although all Fe materials (0.1 g L-1) alone could not degrade aqueous PCB28 (0.1 mg L-1) under dark or aerobic conditions, nZVI20, nZVI100, α-Fe2O3, and Fe2+ promoted PCB28 degradation by JD37, with the half-life of PCB28 shortened from 16.5 h by JD37 alone to 8.1 h with nZVI100 cotreatment. Mechanistically, the nanomaterials stimulated JD37 to secrete phenazine-1-carboxylic acid and accelerated the NADH/NAD+ conversion, promoting O2*- generation; JD37 increased Fe(II) dissolution from the nanomaterials, facilitating *OH generation; and the ROS gradually degraded PCB28 into benzoic acid through dihydroxy substitution, oxidation to quinone, and Michael addition. These findings provide a new strategy of nanoenabled biodegradation of organic pollutants by applying Fe-based nanomaterials and PGPR.


Assuntos
Poluentes Ambientais , Nanoestruturas , Bifenilos Policlorados , Espécies Reativas de Oxigênio , Ferro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...