Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 946: 174200, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936705

RESUMO

Alternatives are being developed to replace fluorinated persistent organic pollutants (POPs) listed in the Stockholm Convention, bypass environmental regulations, and overcome environmental risks. However, the extensive usage of fluorinated POPs alternatives has revealed potential risks such as high exposure levels, long-range transport properties, and physiological toxicity. Therefore, it is imperative to rethink the alternatives and their treatment technologies. This review aims to consider the existing destructive technologies for completely eliminating fluorinated POPs alternatives from the earth based on the updated classification and risks overview. Herein, the types of common alternatives were renewed and categorized, and their risks to the environment and organisms were concluded. The efficiency, effectiveness, energy utilization, sustainability, and cost of various degradation technologies in the treatment of fluorinated POPs alternatives were reviewed and evaluated. Meanwhile, the reaction mechanisms of different fluorinated POPs alternatives are systematically generalized, and the correlation between the structure of alternatives and the degradation characteristics was discussed, providing mechanistic insights for their removal from the environment. Overall, the review supplies a theoretical foundation and reference for the control and treatment of fluorinated POPs alternatives pollution.

2.
Chemosphere ; 352: 141333, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336036

RESUMO

Persulfate-based advanced oxidation processes (PS-AOPs) show a bright prospect in sewage purification. The development of efficient catalysts with simple preparation process and eco-friendliness is the key for their applying in practical water treatment. Herein, a bimetallic Cu-Fe metal organic framework (MOF) was simply synthesized by using one-pot solvothermal methods and employed for activating peroxymonosulfate (PMS) to degrade organic pollutants in water. The Cu-Fe-MOF/PMS exhibited excellent degradation efficiencies (over 95% in 30 min) for a variety of pollutants, including phenol, bisphenol A, 2,4-dichlorophenol, methyl blue, rhodamine B, tetracycline and sulfamethoxazole. The degradation efficiency was impacted by dosages of Cu-Fe-MOF, PMS concentrations, reaction temperature, solution pH and anionic species. Phenol could be efficiently decomposed in a wide pH range of 5-9, with the highest degradation and mineralization efficiency of nearly 100% and 70%, respectively. Free radicals and non-free radicals participated in degrading of phenol at the same time, with dominantly free radical process, because sulfate radicals (SO4·-) and hydroxyl radicals (·OH) were the primary active substances by contribution calculation. Cu-Fe-MOF was acted as electron shuttle between molecules of phenol and PMS, and the cooperation effect of Fe and Cu on the Cu-Fe-MOF promoted the electron transfer, achieving the high degradation efficiency of phenol. Thus, Cu-Fe-MOF is an ideal catalyst for activating PMS, which is conducive to promote the applying of catalyst-activated PMS processes for practical wastewater treatments.


Assuntos
Poluentes Ambientais , Estruturas Metalorgânicas , Ferro/química , Poluentes Ambientais/química , Elétrons , Peróxidos/química , Fenóis
3.
Chemosphere ; 346: 140636, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37949189

RESUMO

Micro/nanoplastics (MNPs) have been increasingly found in environments, food, and organisms, arousing wide public concerns. MNPs may enter food chains through water, posing a threat to human health. Therefore, efficient and environmentally friendly technologies are needed to remove MNPs from contaminated aqueous environments. Advanced oxidation processes (AOPs) produce a vast amount of active species, such as hydroxyl radicals (·OH), known for their strong oxidation capacity. As a result, an increasing number of researchers have focused on using AOPs to decompose and remove MNPs from water. This review summarizes the progress in researches on the removal of MNPs from water by AOPs, including ultraviolet photolysis, ozone oxidation, photocatalysis, Fenton oxidation, electrocatalysis, persulfate oxidation, and plasma oxidation, etc. The removal efficiencies of these AOPs for MNPs in water and the influencing factors are comprehensively analyzed, meanwhile, the oxidation mechanisms and reaction pathways are also discussed in detail. Most AOPs can achieve the degradation of MNPs, mainly manifest as the decrease of particle size and the increase of mass loss, but the mineralization rate is low, thus requiring further optimization for improved performance. Investigating various AOPs is crucial for achieving the complete decomposition of MNPs in water. AOPs will undoubtedly play a vital role in the future for the removal of MNPs from water.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Humanos , Água , Microplásticos , Poluentes Químicos da Água/análise , Oxirredução
4.
Chemosphere ; 339: 139486, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37499803

RESUMO

In the current era of severe energy and environmental crises, the need for efficient and sustainable methods to control pollution and promote resource recycling has become increasingly important. Photocatalytic degradation of pollutants and simultaneous production of clean energy is one such approach that has garnered significant attention in recent years. The principle of photocatalysis involves the development of efficient photocatalysts and the efficient utilization of solar energy. The use of organic contaminants can enhance the photocatalytic reactions, leading to the sustainable generation of clean energy. Herein, we provide a comprehensive review of the latest advances in the application of photocatalytic synergized clean energy production in the environmental field. This review highlights the latest developments and achievements in this field, highlighting the potential for this approach to revolutionize the way we approach environmental pollution control and resource recycling. The review focuses on (1) the mechanism of photocatalytic degradation and synergistic energy production, (2) photocatalysts and synthesis strategies, (3) photocatalytic carbon dioxide reduction, (4) pollutant degradation, and (5) hydrogen and electricity production. In addition, perspectives on key challenges and opportunities in photocatalysis and clean energy for future developments are proposed. This review provides a roadmap for future research directions and innovations of photocatalysis that could contribute to the development of more sustainable and cleaner energy solutions.


Assuntos
Poluentes Ambientais , Poluição Ambiental , Eletricidade , Hidrogênio , Fenômenos Físicos
5.
Chem Commun (Camb) ; 58(68): 9552-9555, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35929487

RESUMO

Built-in electrophilic/nucleophilic domains promoted the favorable adsorption of urea molecules on the surface/interface of heterogeneous Ni/Ni2P for urea oxidation.

6.
Chemosphere ; 291(Pt 2): 132873, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34774611

RESUMO

Semiconductor photocatalysts are of great importance for addressing current environmental and energy crises. In this study, we developed a simple exfoliation-sonication route to fabricate nitrogen carbide quantum dots (CNQDs) doped nitrogen carbide nanosheet (CNS) composite photocatalysts which were employed to produce hydrogen and degrade organic pollutants (methyl orange, acridine orange, aniline, and phenol) synchronously under visible light irradiation. The presence of acridine orange and aniline enhanced the hydrogen evolution efficiency from 8.8 mmol g-1 h-1 to 32.1 and 11.7 mmol g-1 h-1, respectively. On the contrary, methyl orange and phenol with the same concentration inhibited hydrogen evolution. Based on the proton chain and energy band analyses, the synchronous mechanism of photocatalytic hydrogen evolution and organic pollutant degradation on CNQDs/CNS was also proposed. On one side, the oxygen-containing functional groups on the surface of CNQDs and the surrounded water molecules constructed proton chains, increasing the combination probability between protons and photo-generated electrons. On the other side, the heterojunction of CNQDs/CNS induced the separation of photo-generated electron-hole pairs. The photo-generated electrons migrate to CNQDs, on which the protons were transformed into hydrogen molecules, while the holes migrated to CNS where the organic pollutants were oxidized synchronously.


Assuntos
Poluentes Ambientais , Pontos Quânticos , Catálise , Hidrogênio , Nitrogênio
7.
J Hazard Mater ; 401: 123608, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33113718

RESUMO

Electrospun nanofibrous membranes (ENFMs) have many superior advantages, such as large specific surface area, high porosity, easy modification, good flexibility, and easy separation for recycling, which are consider as excellent adsorbents. In this paper, the research progress in the adsorption of heavy metals in water treatment by ENFMs is reviewed. Three types of ENFMs, including organic polymer ENFMs, organic polymer/inorganic material composite ENFMs and inorganic ENFMs are summarized, and their adsorption capacities for heavy metals in water are compared. The adsorption selectivity and capacity of ENFMs for heavy metals are depended largely on the type and number of functional groups on the surface of membranes, and usually the more the functional groups, the higher the adsorption capacity. The adsorption mechanisms of ENFMs are also mainly determined by the type of functional groups on the membrane. At present, the main challenge is to achieve the mass production of high-quality nanofibers and their actual application in the treatment of heavy metal-containing wastewater. Therefore, more consideration should be focused on the improvement of stability, mechanical strength and reusability of ENFMs. This review may provide an insight for the development of ENFMs-based adsorbents for heavy metals separation and water purification in the future.

8.
Commun Mater ; 1(1): 66, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33029593

RESUMO

Solar energy can be converted into chemical energy by photocatalytic water splitting to produce molecular hydrogen. Details of the photo-induced reaction mechanism occurring on the surface of a semiconductor are not fully understood, however. Herein, we employ a model photocatalytic system consisting of single atoms deposited on quantum dots that are anchored on to a primary photocatalyst to explore fundamental aspects of photolytic hydrogen generation. Single platinum atoms (Pt1) are anchored onto carbon nitride quantum dots (CNQDs), which are loaded onto graphitic carbon nitride nanosheets (CNS), forming a Pt1@CNQDs/CNS composite. Pt1@CNQDs/CNS provides a well-defined photocatalytic system in which the electron and proton transfer processes that lead to the formation of hydrogen gas can be investigated. Results suggest that hydrogen bonding between hydrophilic surface groups of the CNQDs and interfacial water molecules facilitates both proton-assisted electron transfer and sorption/desorption pathways. Surface bound hydrogen atoms appear to diffuse from CNQDs surface sites to the deposited Pt1 catalytic sites leading to higher hydrogen-atom fugacity surrounding each isolated Pt1 site. We identify a pathway that allows for hydrogen-atom recombination into molecular hydrogen and eventually to hydrogen bubble evolution.

9.
Water Res ; 181: 115964, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32492590

RESUMO

The production of perfluoroalkyl acids (PFAAs) has been phased out over recent decades; however, no significant decline in their environmental concentrations has been observed. This is partly due to the photochemical decomposition of PFAAs precursors (PrePFAAs) which remain in extensive use. The decomposition of PrePFAAs may be accelerated by the light-activated engineered nanomaterials (ENMs) in water. In light of this hypothesis, we investigated the photochemical transformation of three PrePFAAs, which are 8:2 fluorotelomer sulfonic acid (8:2 FTSA), 8:2 fluorotelomer alcohol (8:2 FTOH), and 2-(N-ethylperfluorooctane-1-sulfonamido ethyl] phosphate (SAmPAP), in the presence of six ENMs under simulated sunlight irradiation. The transformation rates of 8:2 FTSA and 8:2 FTOH were increased by 2-6 times when in the presence of six ENMs. However, most of ENMs appeared to inhibit the decomposition of SAmPAP. The transformation rates of PrePFAAs were found to depend on the yield of reactive oxygen species generated by ENMs, but the rates were also related to compound photo-stability, adsorption to surfaces, and photo-shielding effects. The PrePFAAs are transformed to perfluorooctanoic acid (PFOA) or/and perfluorooctane sulfonate (PFOS) with higher toxicity and longer half-life, PFOA or PFOS and a few PFAAs having shorter carbon chain lengths. Higher concentrations of the PFAAs photodegradation products were observed in the presence of most of the ENMs.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Nanoestruturas , Poluentes Químicos da Água , Adsorção , Caprilatos , Monitoramento Ambiental , Ácidos Sulfônicos , Água
10.
J Hazard Mater ; 392: 122314, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32092651

RESUMO

A self-made microporous molecular sieve CS-Z1 has been found to have excellent adsorption performance for small molecular nitrile and pyridine pollutants in acrylonitrile production wastewater. In order to explore its adsorption mechanism, the adsorption kinetics, isotherms and thermodynamics of CS-Z1 for eight nitrile and pyridine organic pollutants with different structures and properties were investigated. Meanwhile, the analysis of molecular dynamics simulation based on density functional theory was conducted to revel the adsorption-diffusion process of different organic pollutants on the surface and in the pores of CS-Z1. Both the experimental and simulated results verified the shape-selective adsorption mechanism of CS-Z1 for these organic pollutants. The adsorption processes of CS-Z1 for these pollutants were spontaneous physical adsorption, and the adsorption efficiency of CS-Z1 mainly depended on the molecular size of pollutant. Benefitting from the flexible crystalline structure of CS-Z1 and the breathing vibration of CS-Z1 orifices, it could adsorb some pollutants with slightly larger size than its pore diameter. Molecular dynamics simulation results visually display the shape-selective adsorption process of CS-Z1 for these pollutants through the respiratory effect of CS-Z1 molecular sieve orifices.

11.
J Hazard Mater ; 382: 121228, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31561197

RESUMO

Vanadate contaminant in groundwater receives increasing attentions, but little is known on its biogeochemical transformation with gaseous electron donors. This study investigated bio-reduction of vanadate coupled with anaerobic methane oxidation and its relationship with nitrate reduction. Results showed 95.8 ±â€¯3.1% of 1 mM vanadate was removed within 7 days using methane as the sole electron donor. Tetravalent vanadium compounds were the main reduction products, which precipitated naturally in groundwater environment. The introduction of nitrate inhibited vanadate reduction, though both were reduced in parallel. Accumulations of volatile fatty acids (VFAs) were observed from methane oxidation. Preliminary microbial community structure and metabolite analyses indicated that vanadate was likely reduced via Methylomonas coupled with methane oxidation or through synergistic relationships between methane oxidizing bacteria and heterotrophic vanadate reducers with VFAs served as the intermediates.


Assuntos
Água Subterrânea/microbiologia , Metano/metabolismo , Nitratos/metabolismo , Vanadatos/metabolismo , Poluentes Químicos da Água/metabolismo , Anaerobiose , Microbiota , Oxirredução
12.
Environ Sci Pollut Res Int ; 24(2): 1565-1577, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27785723

RESUMO

Flotation reagents are hugely and increasingly used in mining and other industrial and economic activities from which an important part is discharged into the environment. China could be the most affected country by the resulting pollution. However, their ecotoxicological dimension is still less addressed and understood. This study aimed to analyze the toxic effect of sodium isobutyl xanthate (SIBX) and sodium isopropyl xanthate (SIPX) to soil microbial richness and activity and to make a comparison between the two compounds in regard to their effects on soil microbial and enzymes activities. Different methods, including microcalorimetry, viable cell counts, cell density, and catalase and fluorescein diacetate (FDA) hydrololase activities measurement, were applied. The two chemicals exhibited a significant inhibitory effect (P < 0.05 or P < 0.01) to all parameters, SIPX being more adverse than SIBX. As the doses of SIBX and SIPX increased from 5 to 300 µg g-1 soil, their inhibitory ratio ranged from 4.84 to 45.16 % and from 16.13 to 69.68 %, respectively. All parameters fluctuated with the incubation time (10-day period). FDA hydrolysis was more directly affected but was relatively more resilient than catalase activity. Potential changes of those chemicals in the experimental media and complementarity between experimental techniques were justified.


Assuntos
Catalase/metabolismo , Ecotoxicologia , Poluentes Ambientais/toxicidade , Mineração , Microbiologia do Solo , Tionas/toxicidade , Biodiversidade , Calorimetria/métodos , Poluentes Ambientais/química , Tionas/química
13.
Water Sci Technol ; 74(9): 2010-2020, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27842021

RESUMO

The wastewater quality of several municipal wastewater treatment plants (MWTPs) in Beijing was studied, and the water densities of different processing units were also measured during the wastewater treatment process. The results clearly showed that the water density declined from influent to effluent of the wastewater treatment process. Meanwhile, the variation in water density had good statistical correlation with the concentrations of total organic carbon, total phosphorus, suspended solids and total solids. Furthermore, the variation in water density could be used to explain the working principles of the Unifed sequencing batch reactor (SBR). Tracer tests were conducted in the Unifed SBR to investigate the hydraulic characteristics of the reactor. The experimental results showed that the variable values of water density from influent to effluent in the Fangzhuang MWTPs were greater than those caused by the temperature difference of >3 °C between the influent and the liquid in the reactor at 13 °C. Moreover, the flow regime of wastewater in the Unifed SBR was affected by the variation in water density, which may lead to stratification or a density current. Ascribed to the appearance of stratification in the Unifed SBR reactor, the water quality of the effluent could not be affected by that of the influent.


Assuntos
Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Fósforo/química
14.
J Hazard Mater ; 317: 485-493, 2016 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-27341377

RESUMO

Multi-walled carbon nanotubes (MWCNTs) were used as modified materials to improve the performance of laccase-carrying electrospun fibrous membranes (LCEFMs). The MWCNTs modified LCEFMs (MWCNTs-LCEFMs) were successfully fabricated via emulsion electrospinning, with active laccase and MWCNTs encapsulated inside the fibers. After modified by an optimal amount (1.5wt%, vs. polymer) of MWCNTs, the obtained MWCNTs-LCEFMs showed not only higher activity recovery (85.3%, vs. free laccase) than LCEFMs (71.2%), but also better storage and operational stability, which were mainly attributed to the promoted electron transfer in laccase-catalytic reaction. Furthermore, the specific surface area and tensile strength of MWCNTs-LCEFMs have also been enhanced nearly 2 and 3 times than those of LCEFMs, respectively. The MWCNTs-LCEFMs were applied to remove the widespread bisphenol A from water, where their removal efficiency reached above 90%, with the degradation efficiency accounting for over 80%, and their adsorption efficiency increased about 45% than that of LCEFMs. In addition, the endurances of MWCNTs-LCEFMs to environmental factors such as pH and temperature were also improved.


Assuntos
Compostos Benzidrílicos/análise , Enzimas Imobilizadas/química , Lacase/química , Membranas Artificiais , Nanofibras/química , Nanotubos de Carbono/química , Fenóis/análise , Poluentes Químicos da Água/análise , Condutividade Elétrica , Emulsões , Modelos Teóricos , Resistência à Tração , Purificação da Água/instrumentação , Purificação da Água/métodos
15.
Water Res ; 85: 216-25, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26331895

RESUMO

Acrylonitrile production wastewater has been widely recognized as one type of refractory organic wastewater because of its complicated composition and low bioavailability. It usually contains plenty of micromolecular nitrile and pyridine, resulting in high chemical oxygen demand (CODCr), total organic carbon (TOC) and total nitrogen (TN) concentrations. In this study, a novel microporous zeolite, CS-Z1, was developed as an adsorbent for rapidly shape-selective adsorption of the micromolecular pollutants from the acrylonitrile production wastewater, and a visible light-driven Ti-ß-Bi2O3 photocatalysis was introduced to sequentially treat the residual macromolecular pollutants for complete purification. The adsorption processes by CS-Z1 were mostly achieved within the first 5 min, and the equilibrium was reached quickly after 30 min, where the CODCr, TOC and TN removal efficiencies of the wastewater were as high as 93.5%, 92.2% and 96.8%, respectively, much higher than those by other adsorbents. Furthermore, the adsorption efficiencies of CS-Z1 were barely affected by the variation of pH value and temperature, which was mainly attributed to the shape-selective adsorption mechanism of the CS-Z1 zeolite. The Ti-ß-Bi2O3 photocatalysis could remove more than 95% of the residual macromolecular pollutants in the wastewater, where a synergistic mechanism of reduction-oxidation/polymerization was proposed. In a 108 h of CS-Z1 adsorption and Ti-ß-Bi2O3 photocatalysis sequential process, the CODCr, TOC and TN concentrations was reduced to below 20, 7 and 5 mg L(-1), respectively, demonstrating the excellent practical potential of the sequential treatment system for acrylonitrile production wastewater.


Assuntos
Acrilonitrila/química , Resíduos Industriais/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Poluentes Químicos da Água/química , Zeolitas/química , Adsorção , Fotólise
16.
Phys Chem Chem Phys ; 17(26): 17421-8, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26076905

RESUMO

Triclosan (TCS) is a potential threat to the environment and human health. Photocatalysis can be used to degrade TCS, but the photocatalytic efficiency is usually limited by the photoabsorptivity and photostability of the photocatalyst. In addition, some toxic by-products might also be generated during photocatalytic processes. In this study, we prepared Au-coated Cu2O nanowire arrays (Au-Cu2O NWAs) by beam sputtering Au onto Cu2O nanowires grown from a Cu foil. We found that photocatalytic degradation of TCS under visible light (420 nm < λ < 780 nm) irradiation and Au-Cu2O NWAs had several advantages. Au-Cu2O NWAs had good photoabsorptivity, high photostability (negligible activity loss after 16 runs), excellent photocatalytic activity (47.6 times faster than that of Cu2O), and low yield of dichlorodibenzo-dioxins/dichlorohydroxydibenzofurans. The degradation intermediates were identified as chlorophenoxyphenol, phenoxyphenol, chlorophenol, catechol, phenol, benzoquinone, and lower volatile acids. We developed the degradation pathway of TCS which follows electron reduction and then oxidation by reactive oxygen species. The mechanism was developed and strengthened using the radical trapping and other measurements. The unusual mechanism and photostability of Au-Cu2O NWAs were attributed to the Au/Cu2O/Cu "sandwich"-like structure. This structure yields a sustained and steady internal electric field, raises the conduction band of Cu2O, reinforces the reductive activity of the photo-generated electrons, and eliminates the photo-generated holes that are responsible for the photo-etching of Cu2O.


Assuntos
Cobre/química , Ouro/química , Luz , Nanofios/química , Processos Fotoquímicos , Triclosan/química , Triclosan/efeitos da radiação , Catálise , Oxirredução , Temperatura
17.
Water Res ; 71: 64-73, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25596562

RESUMO

Halogenated phenolic compounds (HPCs) are exerting negative effects on human beings and ecological health. Zero-valence metal reduction can dehalogenate HPCs rapidly but cannot mineralize them. Enzymatic catalysis can oxidize phenolic compounds but fails to dehalogenate efficiently, and sometimes even produces more toxic products. In this study, [Fe|Ni|Cu] tri-metallic reduction (TMR) and laccase-catalytic oxidation (LCO) processes were combined to sequentially remove HPCs, including triclosan, tetrabromobisphenol A, and 2-bromo-4-fluorophenol in water. The kinetics, pH and temperature dependences of TMR and LCO were obtained. The detailed TMR, LCO, and TMR-LCO transformation pathways of three HPCs were well described based on the identification of intermediate products and frontier molecular orbitals (FMOs) theory. The results showed that the two-stage process worked synergically: TMR that reductively dehalogenated HPCs followed by LCO that completely removed dehalogenated products. TMR was proven to not only improve biodegradability of HPCs but also reduce the yield of potential carcinogenic by-products. Furthermore, a TMR-LCO flow reactor was assembled and launched for 256 h, during which >95% HPCs and >75% TOC were removed. Meanwhile, monitored by microorganism indicators, 83.2%-92.7% acute toxicity of HPCs was eliminated, and the genotoxicity, produced by LCO, was also avoided by using TMR as pretreatment process.


Assuntos
Bifenil Polibromatos/química , Triclosan/química , Eliminação de Resíduos Líquidos/métodos , Catálise , Escherichia coli , Halogenação , Cinética , Lacase/química , Nanopartículas Metálicas/química , Testes de Mutagenicidade , Oxirredução , Bifenil Polibromatos/toxicidade , Salmonella typhimurium , Triclosan/toxicidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
18.
Chemosphere ; 101: 41-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24296029

RESUMO

P recovery from swine wastewater has become a great concern as a result of the high demand for P resources and its potential eutrophication effects on water ecosystems. The method of magnesium ammonium phosphate (MAP) crystallization was used to recover P from simulated swine wastewater, and the effects of three organic acids (citric acid, succinic acid and acetic acid) on P removal efficiency and rate at different pH values were investigated. The results indicated that the P removal efficiency was worst affected by citric acid in the optimal pH range of 9.0-10.5, followed by succinic acid and acetic acid, and the influencing extent of organic acids decreased with the increasing pH value. Due to the complexation between organic acid and Mg(2+)/NH4(+), all of three organic acids could inhibit the P removal rate at the beginning of the reaction, which showed positive correlation between the inhibition effects and the concentration of organic acids. The high concentration of citric acid could completely suppress the MAP crystallization reaction. Moreover, citric acid and succinic acid brought obvious effects on the morphology of the crystallized products. The experimental results also demonstrated that MAP crystals could be obtained in the presence of different kinds and concentrations of organic acids.


Assuntos
Ácidos Acíclicos/química , Compostos de Magnésio/síntese química , Fosfatos/síntese química , Fósforo/isolamento & purificação , Águas Residuárias/química , Animais , Cristalização , Magnésio/química , Estruvita , Suínos
19.
Chemosphere ; 93(8): 1593-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24001664

RESUMO

Multi-walled carbon nanotube-filled electrospun nanofibrous membranes (MWCNT-ENFMs) were prepared by electrospinning. The addition of MWCNTs (0.5 wt.% vs. ENFMs) doubled the specific surface area and tensile strength of the ENFMs. The MWCNT-ENFMs were used to adsorb perfluorooctane sulfonate (PFOS) in aqueous solutions. The sorption kinetics results showed that the sorption rate of PFOS onto the MWCNT-ENFMs was much higher than the sorption rate of PFOS onto the pure ENFMs control, and the pseudo-second-order model (PSOM) described the sorption kinetics well. The sorption isotherms indicated that the sorption capacity of the MWCNT-ENFMs for PFOS (16.29±0.26 µmol g(-1)) increased approximately 18 times, compared with the pure ENFMs (0.92±0.06 µmol g(-1)). Moreover, the solution pH significantly affected the sorption efficiency and sorption mechanism. The MWCNT-ENFMs were negatively charged from pH 2.0-10.0, but the electrostatic repulsion between the MWCNT-ENFMs and PFOS was overcome by the hydrophobic interactions between PFOS and the MWCNTs or nanofibers. The strong hydrophobic interactions between PFOS and the MWCNTs played a dominant role in the sorption process. For the pure ENFMs, the electrostatic repulsion was conquered by the hydrophobic interactions between PFOS and the nanofibers at pH>3.1. In addition to the hydrophobic interactions, an electrostatic attraction between PFOS and the pure ENFMs was involved in the sorption process at pH<3.1.


Assuntos
Ácidos Alcanossulfônicos/química , Fluorocarbonos/química , Nanotubos de Carbono/química , Poluentes Químicos da Água/química , Adsorção , Ácidos Alcanossulfônicos/análise , Fluorocarbonos/análise , Interações Hidrofóbicas e Hidrofílicas , Cinética , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Purificação da Água/métodos
20.
J Hazard Mater ; 248-249: 254-60, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23385205

RESUMO

The remediation of polycyclic aromatic hydrocarbons (PAHs) polluted waters has become a concern as a result of the widespread use of PAHs and their adverse impacts on water ecosystems and human health. To remove PAHs rapidly and efficiently in situ, an active fibrous membrane, laccase-loading spider-type reactor (LSTR) was fabricated by electrospinning a poly(D,L-lactide-co-glycolide) (PDLGA)/laccase emulsion. The LSTR is composed of beads-in-string structural core-shell fibers, with active laccase encapsulated inside the beads and nanoscale pores on the surface of the beads. This structure can load more laccase and retains higher activity than do linear structural core-shell fibers. The LSTR achieves the efficient removal/degradation of PAHs in water, which is attributed to not only the protection of the laccase activity by the core-shell structure but also the pre-concentration (adsorption) of PAHs on the surface of the LSTR and the concentration of laccase in the beads. Moreover, the effects of pH, temperature and dissolved organic matter (DOM) concentration on the removal of PAHs by the LSTR, in comparison with that by free laccase, have been taken into account. A synergetic mechanism including adsorption, directional migration and degradation for PAH removal is proposed.


Assuntos
Lacase/química , Ácido Láctico/química , Hidrocarbonetos Policíclicos Aromáticos/química , Ácido Poliglicólico/química , Poluentes Químicos da Água/química , Adsorção , Concentração de Íons de Hidrogênio , Membranas Artificiais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Purificação da Água/instrumentação , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...