Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 169: 115877, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37951025

RESUMO

DNA repair is a vital mechanism in cells that protects against DNA damage caused by internal and external factors. It involves a network of signaling pathways that monitor and transmit damage signals, activating various cellular activities to repair DNA damage and maintain genomic integrity. Dysfunctions in this repair pathway are strongly associated with the development and progression of cancer. However, they also present an opportunity for targeted therapy in breast cancer. Extensive research has focused on developing inhibitors that play a crucial role in the signaling pathway of DNA repair, particularly due to the remarkable success of PARP1 inhibitors (PARPis) in treating breast cancer patients with BRCA1/2 mutations. In this review, we summarize the current research progress and clinical implementation of BRCA and BRCAness in targeted treatments for the DNA repair pathway. Additionally, we present advancements in diverse inhibitors of DNA repair, both as individual and combined approaches, for treating breast cancer. We also discuss the clinical application of DNA repair-targeted therapy for breast cancer, including the rationale, indications, and summarized clinical data for patients with different breast cancer subtypes. We assess their influence on cancer progression, survival rates, and major adverse reactions. Last, we anticipate forthcoming advancements in targeted therapy for cancer treatment and emphasize prospective areas of development.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerases/metabolismo , Reparo do DNA , Dano ao DNA
2.
Front Cell Dev Biol ; 9: 731086, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722511

RESUMO

Stanniocalcin-1 (STC1) is a glycoprotein hormone whose abnormal expression has been reported to be associated with a variety of tumors, but its function in breast cancer is not well understood. Through modulation of STC1 expression in different breast cancer cell lines, our study found that STC1 could promote the proliferation and growth of breast cancer cells and promote metastasis. Furthermore, STC1 reduced apoptosis induction by irradiation. We also found that STC1 could promote a homologous recombination-mediated DNA damage repair by recruiting BRCA1 to sites of damage. Moreover, STC1 silencing sensitized breast cancer cells to treatment with irradiation (IR), olaparib, or cisplatin in vitro. In clinical settings, the serum concentration of STC1 was higher in breast cancer patients than in healthy women, as detected by enzyme-linked immunosorbent assay (ELISA). In addition, immunohistochemical staining of breast cancer specimens showed that a high expression of STC1 was negatively correlated with recurrence-free survival in breast cancer, indicating that STC1 expression could be used as a predictive marker for a poor prognosis in breast cancer. All these findings indicate that STC1 promotes breast cancer tumorigenesis and that breast cancers with a high level of STC1 are more resistant to treatment, probably through homologous recombination (HR) promotion. Furthermore, combining STC1 inhibition and DNA damage-inducing drugs may be a novel approach to improve the survival of patients with STC1-expressing breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...