Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38850215

RESUMO

Spinocerebellar ataxia type 3 (SCA3) is primarily characterized by progressive cerebellar degeneration, including gray matter atrophy and disrupted anatomical and functional connectivity. The alterations of cerebellar white matter structural network in SCA3 and the underlying neurobiological mechanism remain unknown. Using a cohort of 20 patients with SCA3 and 20 healthy controls, we constructed cerebellar structural networks from diffusion MRI and investigated alterations of topological organization. Then, we mapped the alterations with transcriptome data from the Allen Human Brain Atlas to identify possible biological mechanisms for regional selective vulnerability to white matter damage. Compared with healthy controls, SCA3 patients exhibited reduced global and nodal efficiency, along with a widespread decrease in edge strength, particularly affecting edges connected to hub regions. The strength of inter-module connections was lower in SCA3 group and negatively correlated with the Scale for the Assessment and Rating of Ataxia score, International Cooperative Ataxia Rating Scale score, and cytosine-adenine-guanine repeat number. Moreover, the transcriptome-connectome association study identified the expression of genes involved in synapse-related and metabolic biological processes. These findings suggest a mechanism of white matter vulnerability and a potential image biomarker for the disease severity, providing insights into neurodegeneration and pathogenesis in this disease.


Assuntos
Cerebelo , Conectoma , Doença de Machado-Joseph , Transcriptoma , Humanos , Masculino , Feminino , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Pessoa de Meia-Idade , Adulto , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/diagnóstico por imagem , Doença de Machado-Joseph/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Imagem de Difusão por Ressonância Magnética
2.
IEEE Trans Med Imaging ; 43(5): 1895-1909, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38194401

RESUMO

The human brain functional connectivity network (FCN) is constrained and shaped by the communication processes in the structural connectivity network (SCN). The underlying communication mechanism thus becomes a critical issue for understanding the formation and organization of the FCN. A number of communication models supported by different routing strategies have been proposed, with shortest path (SP), random diffusion (DIF), and spatial navigation (NAV) as the most typical, respectively requiring network global knowledge, local knowledge, and both for path seeking. Yet these models all assumed every brain region to use one routing strategy uniformly, ignoring convergent evidence that supports the regional heterogeneity in both terms of biological substrates and functional roles. In this regard, the current study developed a hybrid communication model that allowed each brain region to choose a routing strategy from SP, DIF, and NAV independently. A genetic algorithm was designed to uncover the underlying region-wise hybrid routing strategy (namely HYB). The HYB was found to outperform the three typical routing strategies in predicting FCN and facilitating robust communication. Analyses on HYB further revealed that brain regions in lower-order functional modules inclined to route signals using global knowledge, while those in higher-order functional modules preferred DIF that requires only local knowledge. Compared to regions that used global knowledge for routing, regions using DIF had denser structural connections, participated in more functional modules, but played a less dominant role within modules. Together, our findings further evidenced that hybrid routing underpins efficient SCN communication and locally heterogeneous structure-function coupling.


Assuntos
Algoritmos , Encéfalo , Humanos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Imageamento por Ressonância Magnética/métodos , Adulto , Masculino , Conectoma/métodos , Feminino
3.
bioRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37745373

RESUMO

The functional connectome of the human brain represents the fundamental network architecture of functional interdependence in brain activity, but its normative growth trajectory across the life course remains unknown. Here, we aggregate the largest, quality-controlled multimodal neuroimaging dataset from 119 global sites, including 33,809 task-free fMRI and structural MRI scans from 32,328 individuals ranging in age from 32 postmenstrual weeks to 80 years. Lifespan growth charts of the connectome are quantified at the whole cortex, system, and regional levels using generalized additive models for location, scale, and shape. We report critical inflection points in the non-linear growth trajectories of the whole-brain functional connectome, particularly peaking in the fourth decade of life. Having established the first fine-grained, lifespan-spanning suite of system-level brain atlases, we generate person-specific parcellation maps and further show distinct maturation timelines for functional segregation within different subsystems. We identify a spatiotemporal gradient axis that governs the life-course growth of regional connectivity, transitioning from primary sensory cortices to higher-order association regions. Using the connectome-based normative model, we demonstrate substantial individual heterogeneities at the network level in patients with autism spectrum disorder and patients with major depressive disorder. Our findings shed light on the life-course evolution of the functional connectome and serve as a normative reference for quantifying individual variation in patients with neurological and psychiatric disorders.

4.
Netw Neurosci ; 7(2): 604-631, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397887

RESUMO

The human brain structural network is thought to be shaped by the optimal trade-off between cost and efficiency. However, most studies on this problem have focused on only the trade-off between cost and global efficiency (i.e., integration) and have overlooked the efficiency of segregated processing (i.e., segregation), which is essential for specialized information processing. Direct evidence on how trade-offs among cost, integration, and segregation shape the human brain network remains lacking. Here, adopting local efficiency and modularity as segregation factors, we used a multiobjective evolutionary algorithm to investigate this problem. We defined three trade-off models, which represented trade-offs between cost and integration (Dual-factor model), and trade-offs among cost, integration, and segregation (local efficiency or modularity; Tri-factor model), respectively. Among these, synthetic networks with optimal trade-off among cost, integration, and modularity (Tri-factor model [Q]) showed the best performance. They had a high recovery rate of structural connections and optimal performance in most network features, especially in segregated processing capacity and network robustness. Morphospace of this trade-off model could further capture the variation of individual behavioral/demographic characteristics in a domain-specific manner. Overall, our results highlight the importance of modularity in the formation of the human brain structural network and provide new insights into the original cost-efficiency trade-off hypothesis.

5.
J Affect Disord ; 329: 257-272, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36863463

RESUMO

BACKGROUND: The advances in resting-state functional magnetic resonance imaging techniques motivate parsing heterogeneity in major depressive disorder (MDD) through neurophysiological subtypes (i.e., biotypes). Based on graph theories, researchers have observed the functional organization of the human brain as a complex system with modular structures and have found wide-spread but variable MDD-related abnormality regarding the modules. The evidence implies the possibility of identifying biotypes using high-dimensional functional connectivity (FC) data in ways that suit the potentially multifaceted biotypes taxonomy. METHODS: We proposed a multiview biotype discovery framework that involves theory-driven feature subspace partition (i.e., "view") and independent subspace clustering. Six views were defined using intra- and intermodule FC regarding three MDD focal modules (i.e., the sensory-motor system, default mode network, and subcortical network). For robust biotypes, the framework was applied to a large multisite sample (805 MDD participants and 738 healthy controls). RESULTS: Two biotypes were stably obtained in each view, respectively characterized by significantly increased and decreased FC compared to healthy controls. These view-specific biotypes promoted the diagnosis of MDD and showed different symptom profiles. By integrating the view-specific biotypes into biotype profiles, a broad spectrum in the neural heterogeneity of MDD and its separation from symptom-based subtypes was further revealed. LIMITATIONS: The power of clinical effects is limited and the cross-sectional nature cannot predict the treatment effects of the biotypes. CONCLUSIONS: Our findings not only contribute to the understanding of heterogeneity in MDD, but also provide a novel subtyping framework that could transcend current diagnostic boundaries and data modality.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Estudos Transversais , Encéfalo , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Análise por Conglomerados
6.
J Neurochem ; 164(2): 210-225, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36184969

RESUMO

Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis shows a predilection for affecting the limbic system, but structural MRI in most patients is usually unremarkable. However, the functional connectivity reorganization of limbic nodes remains unknown. Serum neurofilament light chains (sNfL) are clinically linked with the disease severity and neurological disability of anti-NMDAR encephalitis. However, the relationship between sNfL and limbic-based functional architecture has not been explored. We consecutively recruited 20 convalescent patients with anti-NMDAR encephalitis and 24 healthy controls from March 2018 to March 2021. Resting-state functional MRI metrics, including fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), and atlas-based seed functional connectivity, were analyzed to investigate regional activities and functional connectivity alterations. Correlation analysis among functional connectivity, sNfL, Mini-Mental State Examination (MMSE), and Montreal cognitive assessment outcomes were explored in patients. Compared with those of healthy controls, the fALFF and ReHo were consistently increased in regions of the posterior default mode network (DMN) hub, mainly the bilateral supramarginal gyrus and precuneus, in patients with anti-NMDAR encephalitis (FWE-corrected p < 0.05). Patients demonstrated disturbed functional organization characterized by reduced connectivity of the posterior DMN hub with the sensorimotor cortex and hypoconnectivity of the parahippocampal gyrus (PHG) with the right fusiform gyrus but extensively enhanced thalamocortical connectivity (FWE-corrected p < 0.05). Furthermore, convalescent sNfL showed a positive correlation with enhanced thalamocortical connectivity (r = 0.4659, p = 0.0384). Onset sNfL with an independent linear correlation to convalescent MMSE performance (B coefficient, -0.013, 95% CI, -0.025 ~ -0.002, p = 0.0260) was positively correlated with intra-DMN connectivity (r = 0.8969, p < 0.0001) and limbic-sensory connectivity (r = 0.4866, p = 0.0346 for hippocampus seed and r = 0.5218, p = 0.0220 for PHG seed). Patients with anti-NMDAR encephalitis demonstrated disturbed functional organization with substantial thalamocortical hyperconnectivity, that was positively correlated with convalescent sNfL. Onset sNfL showed a positive correlation with intra-DMN connectivity and limbic-sensory connectivity.


Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato , Humanos , Encefalite Antirreceptor de N-Metil-D-Aspartato/diagnóstico por imagem , Encéfalo , Filamentos Intermediários , Imageamento por Ressonância Magnética , Lobo Parietal
7.
Brain Imaging Behav ; 16(6): 2667-2680, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36115007

RESUMO

Self-compassion is beneficial for individuals' emotional health, but debates regarding its conceptualization are increasing. The present study aimed to explore the neural basis of self-compassion and its compassionate and uncompassionate dimensions and the indirect path from neural basis to emotional health. Structural MRI and Resting-state fMRI data were used to measure the gray matter volume (GMV) and the amplitude of low-frequency fluctuation (ALFF) in 88 healthy college students. We found that individuals with higher self-compassion had decreased GMV in the prefrontal cortex, cerebellum as well as lower ALFF in the occipital lobe. The compassionate and uncompassionate dimensions of self-compassion shared some similarities (e.g., common correlation with GMV in the medial prefrontal cortex, ALFF in the occipital lobe) but also had some differences (e.g., only uncompassionate dimensions correlated with GMV in the lateral prefrontal cortex, ALFF in medial temporal lobe/striatum). The indirect path analyses revealed that corresponding brain characteristics could have associations with emotional health through self-compassion, as well as its uncompassionate dimension, but not compassionate dimension. This exploratory whole-brain study showed some preliminary findings that compassionate and uncompassionate dimensions of self-compassion were related to distinct brain regions, which are both important to the current conceptualization of self-compassion and intervention study.


Assuntos
Imageamento por Ressonância Magnética , Autocompaixão , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Substância Cinzenta/diagnóstico por imagem
8.
Hum Brain Mapp ; 43(12): 3775-3791, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35475571

RESUMO

An emerging trend is to use regression-based machine learning approaches to predict cognitive functions at the individual level from neuroimaging data. However, individual prediction models are inherently influenced by the vast options for network construction and model selection in machine learning pipelines. In particular, the brain white matter (WM) structural connectome lacks a systematic evaluation of the effects of different options in the pipeline on predictive performance. Here, we focused on the methodological evaluation of brain structural connectome-based predictions. For network construction, we considered two parcellation schemes for defining nodes and seven strategies for defining edges. For the regression algorithms, we used eight regression models. Four cognitive domains and brain age were targeted as predictive tasks based on two independent datasets (Beijing Aging Brain Rejuvenation Initiative [BABRI]: 633 healthy older adults; Human Connectome Projects in Aging [HCP-A]: 560 healthy older adults). Based on the results, the WM structural connectome provided a satisfying predictive ability for individual age and cognitive functions, especially for executive function and attention. Second, different parcellation schemes induce a significant difference in predictive performance. Third, prediction results from different data sets showed that dMRI with distinct acquisition parameters may plausibly result in a preference for proper fiber reconstruction algorithms and different weighting options. Finally, deep learning and Elastic-Net models are more accurate and robust in connectome-based predictions. Together, significant effects of different options in WM network construction and regression algorithms on the predictive performances are identified in this study, which may provide important references and guidelines to select suitable options for future studies in this field.


Assuntos
Conectoma , Substância Branca , Idoso , Encéfalo/diagnóstico por imagem , Cognição , Conectoma/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Substância Branca/diagnóstico por imagem
9.
Neuroimage ; 253: 119125, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35331872

RESUMO

Previous studies have demonstrated that the brain functional modular organization, which is a fundamental feature of the human brain, would change along the adult lifespan. However, these studies assumed that each brain region belonged to a single functional module, although there has been convergent evidence supporting the existence of overlap among functional modules in the human brain. To reveal how age affects the overlapping functional modular organization, this study applied an overlapping module detection algorithm that requires no prior knowledge to the resting-state fMRI data of a healthy cohort (N = 570) aged from 18 to 88 years old. A series of measures were derived to delineate the characteristics of the overlapping modular structure and the set of overlapping nodes (brain regions participating in two or more modules) identified from each participant. Age-related regression analyses on these measures found linearly decreasing trends in the overlapping modularity and the modular similarity. The number of overlapping nodes was found increasing with age, but the increment was not even over the brain. In addition, across the adult lifespan and within each age group, the nodal overlapping probability consistently had positive correlations with both functional gradient and flexibility. Further, by correlation and mediation analyses, we showed that the influence of age on memory-related cognitive performance might be explained by the change in the overlapping functional modular organization. Together, our results revealed age-related decreased segregation from the brain functional overlapping modular organization perspective, which could provide new insight into the adult lifespan changes in brain function and the influence of such changes on cognitive performance.


Assuntos
Conectoma , Longevidade , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Encéfalo , Cognição , Humanos , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
10.
Brain Imaging Behav ; 16(3): 1260-1274, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34988779

RESUMO

To advance the understanding of the dynamic relationship between brain activities and emotional experiences, we examined the neural patterns of tension, a unique emotion that highly depends on how an event unfolds. Specifically, the present study explored the temporal relationship between functional connectivity patterns within and between different brain functional modules and the fluctuation in tension during film watching. Due to the highly contextualized and time-varying nature of tension, we expected that multiple neural networks would be involved in the dynamic tension experience. Using the neuroimaging data of 546 participants, we conducted a dynamic brain analysis to identify the intra- and inter-module functional connectivity patterns that are significantly correlated with the fluctuation of tension over time. The results showed that the inter-module connectivity of cingulo-opercular network, fronto-parietal network, and default mode network is involved in the dynamic experience of tension. These findings demonstrate a close relationship between brain functional connectivity patterns and emotional dynamics, which supports the importance of functional connectivity dynamics in understanding our cognitive and emotional processes.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Filmes Cinematográficos , Vias Neurais/diagnóstico por imagem , Neuroimagem
11.
Artigo em Inglês | MEDLINE | ID: mdl-34688810

RESUMO

OBJECTIVE: Schizophrenia is a heterogenous psychiatric disease, and deficit schizophrenia (DS) is a clinical subgroup with primary and enduring negative symptoms. Although previous neuroimaging studies have identified functional connectome alterations in schizophrenia, the modular organizations in DS and nondeficit schizophrenia (NDS) remain poorly understood. Therefore, this study aimed to investigate the modular-level alterations in DS patients compared with the NDS and healthy control (HC) groups. METHODS: A previously collected dataset was re-analyzed, in which 74 chronic male schizophrenia patients (33 DS and 41 NDS) and 40 HC underwent resting-state functional magnetic resonance imaging with eyes closed in a Siemens 3 T scanner (scanning duration = 8 min). Modular- (intramodule and intermodule connectivity) and nodal- [normalized within-module degree (Zi) and participation coefficient (PCi)] level graph theory properties were computed and compared among the three groups. Receiver operating characteristic curve (ROC) analyses were performed to examine the classification ability of these measures, and partial correlations were conducted between network measures and symptom severity. Validation analyses on head motion, network sparsity, and parcellation scheme were also performed. RESULTS: Both schizophrenia subgroups showed decreased intramodule connectivity in salience network (SN), somatosensory-motor network (SMN), and visual network (VN), and increased intermodule connectivity in SMN-default mode network (DMN) and SMN-frontoparietal network (FPN). Compared with NDS patients, DS patients showed weaker intramodule connectivity in SN and stronger intermodule connectivity in SMN-FPN and SMN-VN. At the nodal level, the schizophrenia-related alterations were distributed in SN, SMN, VN, and DMN, and 7 DS-specific nodal alterations were identified. Intramodule connectivity of SN, intermodule connectivity of SMN-VN, and Zi of left precuneus successfully distinguished the three groups. Partial correlational analyses revealed that these measures were related to negative symptoms, general psychiatric symptoms, and neurocognitive function. CONCLUSION: Our findings suggest that functional connectomes, especially SN, SMN, and VN, may capture the distinct and common disruptions of DS and NDS. These findings may help to understand the neuropathology of negative symptoms of schizophrenia and inform targets for treating different schizophrenia subtypes.


Assuntos
Encéfalo/fisiopatologia , Conectoma , Rede de Modo Padrão , Esquizofrenia , Conjuntos de Dados como Assunto , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Lobo Parietal , Esquizofrenia/classificação , Esquizofrenia/fisiopatologia
12.
Neuroimage ; 245: 118743, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34800667

RESUMO

It has been revealed that intersubject variability (ISV) in intrinsic functional connectivity (FC) is associated with a wide variety of cognitive and behavioral performances. However, the underlying organizational principle of ISV in FC and its related gene transcriptional profiles remain unclear. Using resting-state fMRI data from the Human Connectome Project (299 adult participants) and microarray gene expression data from the Allen Human Brain Atlas, we conducted a transcription-neuroimaging association study to investigate the spatial configurations of ISV in intrinsic FC and their associations with spatial gene transcriptional profiles. We found that the multimodal association cortices showed the greatest ISV in FC, while the unimodal cortices and subcortical areas showed the least ISV. Importantly, partial least squares regression analysis revealed that the transcriptional profiles of genes associated with human accelerated regions (HARs) could explain 31.29% of the variation in the spatial distribution of ISV in FC. The top-related genes in the transcriptional profiles were enriched for the development of the central nervous system, neurogenesis and the cellular components of synapse. Moreover, we observed that the effect of gene expression profile on the heterogeneous distribution of ISV in FC was significantly mediated by the cerebral blood flow configuration. These findings highlighted the spatial arrangement of ISV in FC and their coupling with variations in transcriptional profiles and cerebral blood flow supply.


Assuntos
Conectoma , Perfilação da Expressão Gênica , Imageamento por Ressonância Magnética , Circulação Cerebrovascular , Humanos , Processamento de Imagem Assistida por Computador
13.
Neuroimage ; 236: 118040, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33852939

RESUMO

It is widely believed that the formation of brain network architecture is under the pressure of optimal trade-off between reducing wiring cost and promoting communication efficiency. However, the questions of whether this trade-off exists in empirical human brain structural networks and, if so, how it takes effect are still not well understood. Here, we employed a multiobjective evolutionary algorithm to directly and quantitatively explore the cost-efficiency trade-off in human brain structural networks. Using this algorithm, we generated a population of synthetic networks with optimal but diverse cost-efficiency trade-offs. It was found that these synthetic networks could not only reproduce a large portion of connections in the empirical brain structural networks but also embed a resembling small-world organization. Moreover, the synthetic and empirical brain networks were found similar in terms of the spatial arrangement of hub regions and the modular structure, which are two important topological features widely assumed to be outcomes of cost-efficiency trade-offs. The synthetic networks had high robustness against random attacks as the empirical brain networks did. Additionally, we also revealed some differences between the synthetic networks and the empirical brain networks, including lower segregated processing capacity and weaker robustness against targeted attacks in the synthetic networks. These findings provide direct and quantitative evidence that the structure of human brain networks is indeed largely influenced by optimal cost-efficiency trade-offs. We also suggest that some additional factors (e.g., segregated processing capacity) might jointly determine the network organization with cost and efficiency.


Assuntos
Algoritmos , Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Rede Nervosa/anatomia & histologia , Neuroimagem/métodos , Adolescente , Adulto , Evolução Biológica , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Masculino , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
14.
J Affect Disord ; 284: 229-237, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33618206

RESUMO

BACKGROUND: Individuals with generalized anxiety disorder (GAD) tend to worry exaggeratedly and uncontrollably about various daily routines. Previous studies have demonstrated that the GAD patients exhibited widespread alternations in both functional networks (FN) and structural networks (SN). However, the simultaneous alternations of the topological organization of FN, SN, as well as their couplings in GAD still remain unknown. METHODS: Using multimodal approach, we constructed FN from resting-state functional magnetic imaging (R-fMRI) data and SN from diffusion magnetic resonance imaging (dMRI) data of 32 adolescent GAD patients and 25 healthy controls (HC). Graph theory analysis was employed to investigate the topological properties of FN, SN, and FN-SN coupling. RESULTS: Compared to HC, the GAD patients showed disruptions in global (i.e., decreased clustering coefficient, global, and local efficiency) and subnetwork (i.e., reduced intermodular connections, rich club, and feeder connections) levels in FN. Abnormal global level properties (i.e., increased characteristic path length and reduced global efficiency) were also observed in SN. Altered FN-SN couplings in normalized characteristic path length and feeder connections were identified in the GAD patients. The identified network measures were correlated with anxiety severity in the GAD patients. LIMITATIONS: The sample size of the current study is small and the cross-sectional nature can not infer causal relationship. CONCLUSIONS: Our findings identified GAD-related topological alternations in both FN and SN, together with the couplings between FN and SN, providing us with a novel perspective for understanding the pathophysiological mechanisms of GAD.


Assuntos
Transtornos de Ansiedade , Preparações Farmacêuticas , Adolescente , Transtornos de Ansiedade/diagnóstico por imagem , Encéfalo , Estudos Transversais , Imagem de Difusão por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética
15.
Brain Struct Funct ; 226(2): 335-350, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33389041

RESUMO

The frequency of brain activity modulates the relationship between the brain and human behavior. Insufficient understanding of frequency-specific features may thus lead to inconsistent explanations of human behavior. However, to date, the frequency-specific features of the human brain functional network at the whole-brain level remain poorly understood. Here, we used resting-state fMRI data and graph-theory analyses to investigate the frequency-specific characteristics of fMRI signals in 12 frequency bands (frequency range 0.01-0.7 Hz) in 75 healthy participants. We found that brain regions with higher level and more complex functions had a more variable functional connectivity pattern but engaged less in higher frequency ranges. Moreover, brain regions that engaged in fewer frequency bands played more integrated roles (i.e., higher network participation coefficient and lower within-module degree) in the functional network, whereas regions that engaged in broader frequency ranges exhibited more segregated functions (i.e., lower network participation coefficient and higher within-module degree). Finally, behavioral analyses revealed that regional frequency variability was associated with a spectrum of behavioral functions from sensorimotor functions to complex cognitive and social functions. Taken together, our results showed that segregated functions are executed in wide frequency ranges, whereas integrated functions are executed mainly in lower frequency ranges. These frequency-specific features of brain networks provided crucial insights into the frequency mechanism of fMRI signals, suggesting that signals in higher frequency ranges should be considered for their relation to cognitive functions.


Assuntos
Encéfalo/diagnóstico por imagem , Conectoma , Rede de Modo Padrão/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
16.
Hum Brain Mapp ; 42(5): 1446-1462, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33277955

RESUMO

The indispensability of visual working memory (VWM) in human daily life suggests its importance in higher cognitive functions and neurological diseases. However, despite the extensive research efforts, most findings on the neural basis of VWM are limited to a unimodal context (either structure or function) and have low generalization. To address the above issues, this study proposed the usage of multimodal neuroimaging in combination with machine learning to reveal the neural mechanism of VWM across a large cohort (N = 547). Specifically, multimodal magnetic resonance imaging features extracted from voxel-wise amplitude of low-frequency fluctuations, gray matter volume, and fractional anisotropy were used to build an individual VWM capacity prediction model through a machine learning pipeline, including the steps of feature selection, relevance vector regression, cross-validation, and model fusion. The resulting model exhibited promising predictive performance on VWM (r = .402, p < .001), and identified features within the subcortical-cerebellum network, default mode network, motor network, corpus callosum, anterior corona radiata, and external capsule as significant predictors. The main results were then compared with those obtained on emotional regulation and fluid intelligence using the same pipeline, confirming the specificity of our findings. Moreover, the main results maintained well under different cross-validation regimes and preprocess strategies. These findings, while providing richer evidence for the importance of multimodality in understanding cognitive functions, offer a solid and general foundation for comprehensively understanding the VWM process from the top down.


Assuntos
Córtex Cerebral , Imageamento por Ressonância Magnética/métodos , Memória de Curto Prazo/fisiologia , Rede Nervosa/fisiologia , Neuroimagem/métodos , Percepção Visual/fisiologia , Substância Branca , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Regulação Emocional/fisiologia , Feminino , Humanos , Inteligência/fisiologia , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Imagem Multimodal , Rede Nervosa/diagnóstico por imagem , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Adulto Jovem
17.
J Psychiatr Res ; 130: 394-404, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32889357

RESUMO

BACKGROUND: Previous studies have suggested that individuals with generalized anxiety disorder (GAD) would show inefficient whole-brain communication and dysconnectivity in the fronto-parietal-subcortical sub-networks in the white matter (WM) structural network. However, these hypotheses have yet to be tested. METHODS: Individual WM structural networks were constructed based on diffusion MRI data and deterministic tractography in 34 first-episode, medication-naïve adolescents with GAD and 27 healthy controls (HCs). Graph theory was applied to investigate the topological organization alterations of the structural network. RESULTS: GAD patients showed disrupted small-world configurations (i.e., increased path length and decreased clustering coefficient) and hub organization (i.e., less connection strength in the feeder and local connections). A decreased connection strength was found in a GAD-related sub-network (mainly involving the frontal-subcortical circuits), which was able to distinguish GAD patients from HCs with higher accuracy (area under the curve of 0.96, sensitivity of 94%, specificity of 89%) than clinical scores and other topological alternations. LIMITATIONS: The current study just compared GAD patients with HCs based on a small sample, leaving whether the alternations found here are specific to GAD still an open question. Future studies are recommended to recruit patients with other anxiety disorders (e.g., social anxiety disorder) and/or comorbid mood disorders to identify the GAD-specific WM alterations using a larger sample. CONCLUSIONS: Our findings highlight the disruption of the topological organization of the whole-brain WM structural network (especially the frontal-subcortical circuits) in GAD, and suggest the potential of using structural connectivity of the GAD-related sub-network as a biomarker for GAD patients.


Assuntos
Preparações Farmacêuticas , Substância Branca , Adolescente , Transtornos de Ansiedade/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão , Humanos , Imageamento por Ressonância Magnética , Substância Branca/diagnóstico por imagem
18.
CNS Neurosci Ther ; 26(9): 962-971, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32378335

RESUMO

AIMS: Alzheimer's disease (AD) is a progressive neurodegenerative disorder. Previous studies have demonstrated abnormalities in functional connectivity (FC) of AD under the assumption that FC is stationary during scanning. However, studies on the FC dynamics of AD, which may provide more insightful perspectives in understanding the neural mechanisms of AD, remain largely unknown. METHODS: Combining the sliding-window approach and the k-means algorithm, we identified three reoccurring dynamic FC states from resting-state fMRI data of 26 AD and 26 healthy controls. The between-group differences both in FC states and in regional temporal variability were calculated, followed by a correlation analysis of these differences with cognitive performances of AD patients. RESULTS: We identified three reoccurring FC states and found abnormal FC mainly in the frontal and temporal cortices. The temporal properties of FC states were changed in AD as characterized by decreased dwell time in State I and increased dwell time in State II. Besides, we found decreased regional temporal variability mainly in the somatomotor, temporal and parietal regions. Disrupted dynamic FC was significantly correlated with cognitive performances of AD patients. CONCLUSION: Our findings suggest abnormal dynamic FC in AD patients, which provides novel insights for understanding the pathophysiological mechanisms of AD.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/fisiopatologia , Encéfalo/fisiologia , Feminino , Humanos , Masculino , Rede Nervosa/fisiologia
19.
Neurobiol Aging ; 75: 71-82, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30553155

RESUMO

Studies have demonstrated that the clinical manifestations of Alzheimer's disease (AD) are associated with abnormal connections in either functional connectivity networks (FCNs) or structural connectivity networks (SCNs). However, the FCN and SCN of AD have usually been examined separately, and the results were inconsistent. In this multimodal study, we collected resting-state functional magnetic resonance imaging and diffusion magnetic resonance imaging data from 46 patients with AD and 39 matched healthy controls (HCs). Graph-theory analysis was used to investigate the topological organization of the FCN and SCN simultaneously. Compared with HCs, both the FCN and SCN of patients with AD showed disrupted network integration (i.e., increased characteristic path length) and segregation (i.e., decreased intramodular connections in the default mode network). Moreover, the FCN, but not the SCN, exhibited a reduced clustering coefficient and reduced rich club connections in AD. The coupling (i.e., correlation) of the FCN and SCN in AD was increased in connections of the default mode network and the rich club. These findings demonstrated overlapping and distinct network disruptions in the FCN and SCN and a strengthened correlation between FCNs and SCNs in AD, which provides a novel perspective for understanding the pathophysiological mechanisms underlying AD.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Encéfalo/patologia , Rede Nervosa/fisiopatologia , Encéfalo/fisiopatologia , Conectoma/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Rede Nervosa/patologia , Vias Neurais/fisiopatologia
20.
Soc Cogn Affect Neurosci ; 13(9): 995-1002, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30137637

RESUMO

Loneliness results from lacking satisfied social connections. However, little is known how trait loneliness, which is a stable personal characteristic, is influenced by different types of social support (i.e. emotional and instrumental support) through the brain activity associated with loneliness. To explore these questions, data of resting-state functional magnetic resonance imaging (R-fMRI) of 92 healthy participants were analyzed. We identified loneliness-related brain regions by correlating participants' loneliness scores with amplitudes of low-frequency fluctuation (ALFF) of R-fMRI data. We then conducted mediation analyses to test whether the negative relation between each type of social support and loneliness was explained via the neural activity in the loneliness-related brain regions. The results showed that loneliness was positively related to the mean ALFF value within right inferior temporal gyrus (ITG). In addition, the negative relation between emotional support and loneliness was explained by a decrease in the spontaneous neural activity within right ITG but this pattern was not observed for instrumental support. These results suggest the importance of social information processing on trait loneliness and highlight the need to differentiate the functions of different types of social support on mental health from a neural perspective.


Assuntos
Encéfalo/fisiologia , Emoções/fisiologia , Solidão/psicologia , Apoio Social , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Feminino , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética , Masculino , Saúde Mental , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...