Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Ecotechnol ; 15: 100255, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36915297

RESUMO

Ammonia recovery from wastewater is crucial, yet technology of low carbon emission and high ammonia perm-selectivity against complex stream compositions is urgently needed. Herein, a membrane-based hybrid process of the Donnan dialysis-electrodialysis process (DD-ED) was proposed for sustainable and efficient ammonia recovery. In principle, DD removes the majority of ammonia in wastewater by exploring the concentration gradient of NH4 + and driven cation (Na+) across the cation exchange membrane, given industrial sodium salt as a driving chemical. An additional ED stage driven by solar energy realizes a further removal of ammonia, recovery of driven cation, and replenishment of OH- toward ammonia stripping. Our results demonstrated that the hybrid DD-ED process achieved ammonia removal efficiency >95%, driving cation (Na+) recovery efficiency >87.1% for synthetic streams, and reduced the OH- loss by up to 78% compared to a standalone DD case. Ammonia fluxes of 98.2 gN m-2 d-1 with the real anaerobic digestion effluent were observed using only solar energy input at 3.8 kWh kgN -1. With verified mass transfer modeling, reasonably controlled operation, and beneficial recovery performance, the hybrid process can be a promising candidate for future nutrient recovery from wastewater in a rural, remote area.

2.
Water Res ; 229: 119453, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509033

RESUMO

Hydrophobic gas permeable membranes (GPMs) exhibit great potential in stripping or recovering ammonia from wastewater, but they also suffer from severe fouling issues due to the complex water matrix, since the related process is often operated under highly alkaline conditions (pH > 11). In this study, we proposed a novel membrane stripping process by integrating a cation exchange membrane (CEM) in alkali-driven Donnan dialysis prior to GPM for efficient and robust ammonia recovery from real biogas slurry. During the conventional stripping for diluted biogas slurry, the ammonia removal across GPM finally decreased by 15% over 6 consecutive batches, likely due to the obvious deposition of inorganic species and penetration of organic compounds (rejection of 90% only). In contrast, a constant ammonia removal of 80% and organic matter rejection of more than 99%, as well as negligible fouling of both membranes, were found for the proposed novel stripping process operated over 120 h. Our results demonstrated that additional divalent cations clearly aggravated the fouling of GPM in conventional stripping, where only weak competition across CEM was found in the CEM-GPM hybrid mode. Then, for raw biogas slurry, the new stripping achieved a stable ammonia removal up to 65%, and no fouling occurrence was found, superior to that in the control (declined removal from 87% to 55%). The antifouling mechanism by integrating CEM prior to GPM involves size exclusion and charge repulsion towards varying foulants. This work highlighted that the novel membrane stripping process of hybrid CEM-GPM significantly mitigated membrane fouling and can be regarded as a potential alternative for ammonia recovery from high-strength complex streams.


Assuntos
Amônia , Biocombustíveis , Amônia/química , Diálise Renal , Águas Residuárias
3.
J Hazard Mater ; 443(Pt B): 130308, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36444051

RESUMO

Rice grown in soils contaminated with arsenic (As) and lead (Pb) can cause lower rice yield and quality due to the toxic stress. Herein, we examined the role of functionalized biochars (raw phosphorus (P)-rich (PBC) and iron (Fe)-modified P-rich (FePBC)) coupled with different irrigation regimes (continuously flooded (CF) and intermittently flooded (IF)) in affecting rice yield and accumulation of As and Pb in rice grain. Results showed that FePBC increased the rice yield under both CF (47.4%) and IF (19.6%) conditions, compared to the controls. Grain As concentration was higher under CF (1.94-2.42 mg kg-1) than IF conditions (1.56-2.31 mg kg-1), whereas the concentration of grain Pb was higher under IF (0.10-0.76 mg kg-1) than CF (0.12-0.48 mg kg-1) conditions. Application of PBC reduced grain Pb by 60.1% under CF conditions, while FePBC reduced grain As by 12.2% under IF conditions, and increased grain Pb by 2.9 and 6.6 times under CF and IF conditions, respectively, compared to the controls. Therefore, application of the multiple-functionalized biochar can be a promising strategy for increasing rice yield and reducing the accumulation of As in rice grain, particularly under IF conditions, whereas it is inapplicable for remediation of paddy soils contaminated with Pb.


Assuntos
Arsênio , Oryza , Solo , Chumbo , Grão Comestível
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...