Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(6)2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37371483

RESUMO

Activation of autophagy represents a potential therapeutic strategy for the treatment of diseases that are caused by the accumulation of defective proteins and the formation of abnormal organelles. Methylated ß-cyclodextrins-threaded polyrotaxane (Me-PRX), a supramolecular structured polymer, induces autophagy by interacting with the endoplasmic reticulum. We previously reported on the successful activation of mitochondria-targeted autophagy by delivering Me-RRX to mitochondria using a MITO-Porter, a mitochondria-targeted nanocarrier. The same level of autophagy induction was achieved at one-twentieth the dosage for the MITO-Porter (Me-PRX) compared to the naked Me-PRX. We report herein on the quantitative evaluation of the intracellular organelle localization of both naked Me-PRX and the MITO-Porter (Me-PRX). Mitochondria, endoplasmic reticulum and lysosomes were selected as target organelles because they would be involved in autophagy induction. In addition, organelle injury and cell viability assays were performed. The results showed that the naked Me-PRX and the MITO-Porter (Me-PRX) were localized in different intracellular organelles, and organelle injury was different, depending on the route of administration, indicating that different organelles contribute to autophagy induction. These findings indicate that the organelle to which the autophagy-inducing molecules are delivered plays an important role in the level of induction of autophagy.


Assuntos
Rotaxanos , beta-Ciclodextrinas , beta-Ciclodextrinas/farmacologia , Rotaxanos/metabolismo , Rotaxanos/farmacologia , Mitocôndrias/metabolismo , Lisossomos/metabolismo , Transporte Biológico , Autofagia
2.
Chem Commun (Camb) ; 55(50): 7203-7206, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31165120

RESUMO

Failure of autophagy induction results in the accumulation of abnormal mitochondria to cause neurodegenerative diseases. Artificial autophagy activation via the mitochondrial delivery of polyrotaxane with autophagy induced activity is achieved using a MITO-Porter, a nanodevice for mitochondrial delivery. This strategy can be applied to innovative research and therapy.


Assuntos
Autofagia/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Nanotecnologia/instrumentação , Rotaxanos/química , beta-Ciclodextrinas/farmacologia , Células HeLa , Humanos , Metilação , beta-Ciclodextrinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...