Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 55: 76-85, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28477836

RESUMO

The present study highlights the potential application of zinc peroxide (ZnO2) nanomaterial as an efficient material for the decontamination of cyanide from contaminated water. A process patent for ZnO2 synthesis has been granted in United States of America (US Patent number 8,715,612; May 2014), South Africa, Bangladesh, and India. The ZnO2 nanomaterial was capped with polyvinylpyrrolidone (PVP) to control the particle size. The PVP capped ZnO2 nanomaterial (PVP-ZnO2) before and after adsorption of cyanide was characterized by scanning electron microscope, transmission electron microscope, X-ray diffractometer, Fourier transform infrared spectroscopy and time of flight-secondary ion mass spectrometry. The remaining concentration of cyanide after adsorption by PVP-ZnO2 was determined using ion chromatograph. The adsorption of cyanide over PVP-ZnO2 was also studied as a function of pH, adsorbent dose, time and concentration of cyanide. The maximum removal of cyanide was observed in pH range 5.8-7.8 within 15min. The adsorption data was fitted to Langmuir and Fruendlich isotherm and it has been observed that data follows both the isotherms and also follows second order kinetics.


Assuntos
Cianetos/química , Peróxidos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Zinco/química , Cianetos/análise , Índia , África do Sul , Poluentes Químicos da Água/análise , Zinco/análise
2.
Luminescence ; 31(2): 348-355, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26198805

RESUMO

A new rare-earth-free NaZnPO4:Mn(2+) (NZP:Mn) phosphor powder has been developed by our group and investigated meticulously for the first time using secondary ion mass spectroscopy and chemical imaging techniques. The studies confirmed the effective incorporation of Mn(2+) into the host lattice, resulting in an enhancement of photoluminescence intensity. Phase purity has been verified and structure parameters have been determined successfully by Rietveld refinement studies. The NZP:Mn phosphor powder exhibits strong absorption bands in the ultraviolet and visible (300-470 nm) regions with a significant broad yellow-green (~543 nm) emission due to the characteristic spin forbidden d-d transition ((4)T1→(6)A1) of Mn(2+) ions, indicating weak crystal field strength at the zinc-replaced manganese site. The decay constants are a few milliseconds, which is a pre-requisite for applications in many display devices. The results obtained suggest that this new phosphor powder will find many interesting applications in semiconductor physics, as cost-effective light-emitting diodes (LEDs), as solar cells and in photo-physics.


Assuntos
Luz , Luminescência , Manganês/química , Fosfatos/química , Sódio/química , Espectrometria de Massa de Íon Secundário , Zinco/química , Medições Luminescentes , Tamanho da Partícula , Teoria Quântica , Propriedades de Superfície , Fatores de Tempo , Difração de Raios X
3.
ACS Appl Mater Interfaces ; 5(7): 2725-32, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23488991

RESUMO

A simple approach is proposed for obtaining low threshold field electron emission from large area diamond-like carbon (DLC) thin films by sandwiching either Ag dots or a thin Ag layer between DLC and nitrogen-containing DLC films. The introduction of silver and nitrogen is found to reduce the threshold field for emission to under 6 V/µm representing a near 46% reduction when compared with unmodified films. The reduction in the threshold field is correlated with the morphology, microstructure, interface, and bonding environment of the films. We find modifications to the structure of the DLC films through promotion of metal-induced sp2 bonding and the introduction of surface asperities, which significantly reduce the value of the threshold field. This can lead to the next-generation, large-area simple and inexpensive field emission devices.

4.
ACS Appl Mater Interfaces ; 4(10): 5309-16, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-22994273

RESUMO

The origin of low threshold field-emission (threshold field 1.25 V/µm) in nanocrystalline diamond-like carbon (nc-DLC) thin films is examined. The introduction of nitrogen and thermal annealing are both observed to change the threshold field and these changes are correlated with changes to the film microstructure. A range of different techniques including micro-Raman and infrared spectroscopy, X-ray diffraction, electron microscopy, energy-dispersive X-ray analysis and time-of-flight-secondary ion mass spectroscopy are used to examine the properties of the films. A comparison of the field emission properties of nc-DLC films with atomically smooth amorphous DLC (a-DLC) films reveals that nc-DLC films have lower threshold fields. Our results show that nc-DLC can be a good candidate for large area field emission display panels and cold cathode emission devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...