Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 6(7): 1880-1891, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38545285

RESUMO

Electromagnetic radiofrequency heating of gold nanoparticles for use in remote hyperthermia cancer treatment has seen rapidly growing interest in the last decade. While most of the focus has been on studying spherical nanoparticles, recent research suggests that using ellipsoidal particles can significantly increase the Joule heating. However, it is still unclear how the presence of ligands affects the electromagnetic absorption in this context. In the present paper, we study the effects of adding a surface coating to ellipsoidal gold nanoparticles, and investigate the change in absorption with respect to coating properties, particle aspect-ratio, and frequency. Both the case of a single nanoparticle and the case of a suspension of nanoparticles are studied. The introduction of a dielectric coating increases the absorption rate for particles with lower aspect ratios and at lower frequencies, potentially improving the flexibility of parameter configurations that can be used in treatment. A thermal analysis reveals that the absorption in the parameter space of lower aspect ratios translate to negligible differential temperature increase, even with the addition of coating. Furthermore, nanoparticles with very large aspect ratios (nanowires) generate less heat with coating compared to no coating. Thus, it is shown that the presence of coating and choice of aspect ratio, have significant impact on the absorption response and must be accounted for in the analysis of ligand-capped nanoparticles. The findings in the present paper provide a valuable tool to optimize the coated gold nanoparticle design parameters, in order to secure clinically useful differential heating.

2.
Sensors (Basel) ; 24(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38400473

RESUMO

Microwave medical imaging (MMI) is experiencing a surge in research interest, with antenna performance emerging as a key area for improvement. This work addresses this need by enhancing the directivity of a compact UWB antenna using a Yagi-Uda-inspired reflector antenna. The proposed reflector-loaded antenna (RLA) exhibited significant gain and directivity improvements compared to a non-directional reference antenna. When analyzed for MMI applications, the RLA showed a maximum increase of 4 dBi in the realized gain and of 14.26 dB in the transmitted field strength within a human breast model. Moreover, it preserved the shape of time-domain input signals with a high correlation factor of 94.86%. To further validate our approach, another non-directional antenna with proven head imaging capabilities was modified with a reflector, achieving similar directivity enhancements. The combined results demonstrate the feasibility of RLAs for improved performance in MMI systems.


Assuntos
Imageamento de Micro-Ondas , Micro-Ondas , Humanos , Diagnóstico por Imagem , Radiografia
3.
Sensors (Basel) ; 23(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37960587

RESUMO

In this article, a compact 4-port UWB (Ultra-Wide Band) MIMO (Multiple Input Multiple Output) antenna is proposed. A low profile FR-4 substrate is used as a dielectric material with the dimensions of 58 × 58 mm2 (0.52λ × 0.52λ) at 2.8 GHz and a standard thickness of 1.6 mm. The proposed design characterizes an impedance bandwidth starting from 2.8 to 12.1 GHz (124.1%). Each of the four elements of the proposed MIMO antenna configuration consists of a monopole antenna with PG (partial ground) that has a slot at its center. The corner of each patch (radiator) and ground slot are rounded for impedance matching. Each unit cell is in an orthogonal orientation, forming a quad-port MIMO antenna system. For reference, the partial ground of each unit cell is connected meticulously with the others. The simulated results of the proposed quad-port MIMO antenna design were configured and validated by fabrication and testing. The proposed Quad-port MIMO design has a 6.57 dBi peak gain and 97% radiation efficiency. The proposed design has good isolation below 15 dB in the lower frequency range and below 20 dB in the higher frequency range. The design has a measured ECC (Envelop Correlation Co-efficient) of 0.03 and DG (Diversity Gain) of 10 dB. The value of TARC (Total Active Reflection Coefficient) over the entire operating band is less than 10 dB. Moreover, the design maintained CCL (Channel Capacity Loss) < 0.4 bits/sec/Hz and MEG (Mean Effective Gain) < 3 dB. Based on the obtained results, the proposed design is suitable for the intended high data rate UWB wireless communication portable devices.

4.
Sensors (Basel) ; 23(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37960695

RESUMO

In this paper, a low-cost resin-coated commercial-photo-paper substrate is used to design a printed reconfigurable multiband antenna. The two PIN diodes are used mainly to redistribute the surface current that provides reconfigurable properties to the proposed antenna. The antenna size of 40 mm × 40 mm × 0.44 mm with a partial ground, covers wireless and mobile bands ranging from 1.91 GHz to 6.75 GHz. The parametric analysis is performed to achieve optimized design parameters of the antenna. The U-shaped and C-shaped emitters are meant to function at 2.4 GHz and 5.9 GHz, respectively, while the primary emitter is designed to operate at 3.5 GHz. The proposed antenna achieved peak gain and radiation efficiency of 3.4 dBi and 90%, respectively. Simulated and measured results of the reflection coefficient, radiation pattern, gain, and efficiency show that the antenna design is in favorable agreement. Since the proposed antenna achieved wideband (1.91-6.75 GHz) using PIN diode configuration, using this technique the need for numerous electronic components to provide multiband frequency is avoided.

5.
Sensors (Basel) ; 23(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37765781

RESUMO

A single negative metamaterial structure with hexagonal split-ring resonators (H-SRRs) is inserted within a two-port multiple-input multiple-output (MIMO) dielectric resonator antenna (DRA) in order to achieve a reduction of mutual coupling between closed multiple antenna elements. Between closed, tightly coupled, high-profile antenna elements, the single negative magnetic inclusions (H-SRRs) are embedded. By incorporating magnetic structures within antenna elements, the mutual coupling is significantly diminished. Mutual coupling reduction is attained by inserting an array of hexagonal split-ring resonators between the inter-spacing elements. An operative approach for the reduction of the mutual coupling between two × two MIMO DRAs initially operating at 5.2-GHz band is provided. To make the simulated design replica of the fabricated prototype, an air gap is introduced between the substrate, DRs, and H-SSRs. The addition of the air gap shifts the simulated results to 5.9 GHz, which closely resembles the measured values. The mutual coupling reduction is realized by integrating a meta-surface amid the two × two MIMO DRAs, which are settled in the H-plane. The meta-surface embraces an array of hexagonal split-ring resonator (H-SRR) cells that are unified along the E-plane. The H-SRR structure is designed to offer band-stop functionality within the antenna bandwidth. The proposed design has an overall dimension of 40 × 58.3 × 4.75 mm3 (1.5λ × 1.02λ × 0.079λ). By stacking the DRA with a one × three array of H-SRR unit cells, a 30 dB reduction in the mutual coupling level is attained without compromising on the antenna performance. The corresponding mutual impedance of the MIMO DRA is better than 30 dB over 5.9-6.1 GHz operating bandwidth. The proposed design has a DG of 10 db, ECC < 0.02, CCL < 0.02 bits/s/Hz, and an MEG of 0 dB. The overall design has a promising performance, which shows its suitability for the target wireless application.

6.
Opt Express ; 30(18): 32610-32620, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36242318

RESUMO

In this paper, we study TEM-wave propagation inside a hollow coaxial waveguide filled with an inhomogeneous metamaterial composite, with a graded transition between a right-handed material (RHM) and an impedance-matched left-handed material (LHM). The graded transition and the TEM-wave propagation occur in the direction perpendicular to the boundary between the two media, which has been chosen to be the z-direction. The relative permittivity ɛ(ω, z) and permeability µ(ω, z) of the RHM-LHM composite vary according to hyperbolic tangent functions along the z-direction. The exact analytical solutions to Maxwell's equations are derived, and the solutions for the field components and wave behavior confirm the expected properties of impedance-matched RHM-LHM structures. Furthermore, a numerical study of the wave propagation over an impedance-matched graded RHM-LHM interface, using the COMSOL Multiphysics software, is performed. An excellent agreement between the analytical results and numerical simulations is obtained, with a relative error of less than 0.1%. The present method has the ability to model smooth realistic material transitions, and includes the abrupt transition as a limiting case. Finally, the RHM-LHM interface width is included as a parameter in the analytical and numerical solutions, allowing for an additional degree of freedom in the design of practical devices using RHM-LHM composites.

7.
Sci Rep ; 12(1): 7907, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35550585

RESUMO

A novel technique is shown to improve the isolation between radiators in antenna arrays. The proposed technique suppresses the surface-wave propagation and reduces substrate loss thereby enhancing the overall performance of the array. This is achieved without affecting the antenna's footprint. The proposed approach is demonstrated on a four-element array for 5G MIMO applications. Each radiating element in the array is constituted from a 3 × 3 matrix of interconnected resonant elements. The technique involves (1) incorporating matching stubs within the resonant elements, (2) framing each of the four-radiating elements inside a dot-wall, and (3) defecting the ground plane with dielectric slots that are aligned under the dot-walls. Results show that with the proposed approach the impedance bandwidth of the array is increased by 58.82% and the improvement in the average isolation between antennas #1&2, #1&3, #1&4 are 8 dB, 14 dB, 16 dB, and 13 dB, respectively. Moreover, improvement in the antenna gain is 4.2% and the total radiation efficiency is 23.53%. These results confirm the efficacy of the technique. The agreement between the simulated and measured results is excellent. Furthermore, the manufacture of the antenna array using the proposed approach is relatively straightforward and cost effective.

8.
Sensors (Basel) ; 22(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35062628

RESUMO

Antennas in wireless sensor networks (WSNs) are characterized by the enhanced capacity of the network, longer range of transmission, better spatial reuse, and lower interference. In this paper, we propose a planar patch antenna for mobile communication applications operating at 1.8, 3.5, and 5.4 GHz. A planar microstrip patch antenna (MPA) consists of two F-shaped resonators that enable operations at 1.8 and 3.5 GHz while operation at 5.4 GHz is achieved when the patch is truncated from the middle. The proposed planar patch is printed on a low-cost FR-4 substrate that is 1.6 mm in thickness. The equivalent circuit model is also designed to validate the reflection coefficient of the proposed antenna with the S11 obtained from the circuit model. It contains three RLC (resistor-inductor-capacitor) circuits for generating three frequency bands for the proposed antenna. Thereby, we obtained a good agreement between simulation and measurement results. The proposed antenna has an elliptically shaped radiation pattern at 1.8 and 3.5 GHz, while the broadside directional pattern is obtained at the 5.4 GHz frequency band. At 1.8, 3.5, and 5.4 GHz, the simulated peak realized gains of 2.34, 5.2, and 1.42 dB are obtained and compared to the experimental peak realized gains of 2.22, 5.18, and 1.38 dB at same frequencies. The results indicate that the proposed planar patch antenna can be utilized for mobile applications such as digital communication systems (DCS), worldwide interoperability for microwave access (WiMAX), and wireless local area networks (WLAN).

9.
Opt Express ; 17(8): 6747-52, 2009 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-19365503

RESUMO

We have investigated the transmission and reflection properties of structures incorporating left-handed materials with graded index of refraction. We present an exact analytical solution to Helmholtz' equation for a graded index profile changing according to a hyperbolic tangent function along the propagation direction. We derive expressions for the field intensity along the graded index structure, and we show excellent agreement between the analytical solution and the corresponding results obtained by accurate numerical simulations. Our model straightforwardly allows for arbitrary spectral dispersion.


Assuntos
Manufaturas , Modelos Teóricos , Refratometria/métodos , Simulação por Computador , Luz , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...