Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Analyst ; 147(22): 5121-5129, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36222111

RESUMO

In this work, the electrochemical response of different morphologies (shapes) and dimensions of additively manufactured (3D-printing) carbon black (CB)/poly-lactic acid (PLA) electrodes are reported. The working electrodes (WE) are printed using standard non-conductive PLA based filament for the housing and commercial Protopasta (carbon black/PLA) filament for the electrode and connection parts. Discs, squares, equilateral triangles and six-point stars with varying working electrode (WE) widths from 2 to 10 mm are evaluated herein towards the well-known near-ideal outer sphere redox probe hexaamineruthenium(III) chloride (RuHex). The results obtained show that triangular and squared electrodes exhibit a faster heterogeneous electron transfer (HET) rate constant (k°) than those of discs and stars, the latter being the slowest one. The results reported here also show a trend between the WE dimension and the reversibility of the electrochemical reaction, which decreases as the WE size increases. It is also observed that the ratio of the geometrical and electroactive area (%realarea) decreases as the overall WE size increases. On the other hand, these four WE shapes were applied toward the well-known and benchmarking detection of ascorbic acid (AA), uric acid (UA), ß-nicotinamide adenine dinucleotide (NADH) and dopamine (DA). Moreover, electroanalytical detection of real acetaminophen (ACOP) samples is also showcased. The different designs for the working electrode proposed in this manuscript are easily changed to any other desired shapes thanks to the additive manufacturing methodology, these four shapes being just an example of what additive manufacturing can offer to experimentalists and to electrochemists in particular. Additive manufacturing is shown here as a versatile and rapid prototyping tool for the production of novel electrochemical sensing platforms, with scope for this work to be able to impact a wide variety of electroanalytical applications.


Assuntos
Dopamina , Fuligem , Eletrodos , Dopamina/análise , Ácido Úrico , Poliésteres , Técnicas Eletroquímicas
2.
Anal Methods ; 13(25): 2812-2822, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34059854

RESUMO

A three dimensional (3D) non-enzymatic glucose disposable electrochemical sensor based on screen-printed graphite macroelectrodes (SPEs), modified with nickel hydroxide (Ni(OH)2/SPE), copper hydroxide (Cu(OH)2/SPE) and mixed (Ni(OH)2/Cu(OH)2/SPE) microstructures were prepared by a facile and cost-effective electrochemical method for the first time. Their morphologies and structures were analyzed by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The electrochemical performances of the modified SPEs were evaluated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and amperometric measurements. EIS experiments showed lower charge transfer resistance Rct values for the modified SPEs, calculated to be 29.24 kΩ, 22.58 kΩ, 13.27 kΩ and 36.48 kΩ for Ni(OH)2/SPE, Cu(OH)2/SPE, Ni(OH)2/Cu(OH)2/SPE, and SPE, respectively. Under optimal experimental conditions, the results reveal that CV, amperometry and EIS can be readily applied to determine glucose using all of the fabricated sensors, however in terms of an accessible and clinically relevant linear range for the electroanalytical detection of glucose, CV is preferred, where Cu(OH)2/SPE exhibits the largest linear range from 1 µM to 20 mM (R2 = 0.997). In terms of sensitivity and the detection limit however, amperometry appeared to be a better choice of technique, particularly with Ni(OH)2/Cu(OH)2/SPE which demonstrated the highest sensitivity of 2029 µA mM-1 cm-2 and the lowest detection limit of 0.2 µM (S/N = 3). Excellent selectivity was evident against common interfering species, and it was shown to be possible to obtain satisfactory results in human blood serum samples using the as-fabricated sensors. The low cost of the SPEs, the facile preparation and observed clinically relevant analytical sensitivities and limit of detections towards the sensing of glucose make these screen-printed macroelectrode based electrochemical sensing platforms promising for routine human blood serum glucose analysis.


Assuntos
Grafite , Eletrodos , Glucose , Humanos , Hidróxidos , Soro
3.
Chem Commun (Camb) ; 57(34): 4198, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33870999

RESUMO

Correction for 'Imaging the reactivity and width of graphene's boundary region' by Huda S. AlSalem et al., Chem. Commun., 2020, 56, 9612-9615, DOI: 10.1039/D0CC02675A.

4.
Chem Commun (Camb) ; 56(67): 9612-9615, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32776054

RESUMO

The reactivity of graphene at its boundary region has been imaged using non-linear spectroscopy to address the controversy whether the terraces of graphene or its edges are more reactive. Graphene was functionalised with phenyl groups, and we subsequently scanned our vibrational sum-frequency generation setup from the functionalised graphene terraces across the edges. A greater phenyl signal is clearly observed at the edges, showing evidence of increased reactivity in the boundary region. We estimate an upper limit of 1 mm for the width of the CVD graphene boundary region.

5.
Biosensors (Basel) ; 10(3)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204548

RESUMO

We demonstrate a facile methodology for the mass production of graphene oxide (GO) bulk-modified screen-printed electrodes (GO-SPEs) that are economical, highly reproducible and provide analytically useful outputs. Through fabricating GO-SPEs with varying percentage mass incorporations (2.5%, 5%, 7.5% and 10%) of GO, an electrocatalytic effect towards the chosen electroanalytical probes is observed, which increases with greater GO incorporated compared to bare/graphite SPEs. The optimum mass ratio of 10% GO to 90% carbon ink produces an electroanalytical signal towards dopamine (DA) and uric acid (UA) which is ca. ×10 greater in magnitude than that achievable at a bare/unmodified graphite SPE. Furthermore, 10% GO-SPEs exhibit a competitively low limit of detection (3σ) towards DA at ca. 81 nM, which is superior to that of a bare/unmodified graphite SPE at ca. 780 nM. The improved analytical response is attributed to the large number of oxygenated species inhabiting the edge and defect sites of the GO nanosheets, which are able to exhibit electrocatalytic responses towards inner-sphere electrochemical analytes. Our reported methodology is simple, scalable, and cost effective for the fabrication of GO-SPEs that display highly competitive LODs and are of significant interest for use in commercial and medicinal applications.


Assuntos
Dopamina/análise , Grafite/química , Ácido Úrico/análise , Técnicas Biossensoriais , Técnicas Eletroquímicas , Eletrodos , Desenho de Equipamento , Limite de Detecção
6.
Nanoscale Adv ; 2(11): 5319-5328, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36132042

RESUMO

The electrochemical response of different morphologies (microstructures) of vertically aligned graphene (VG) configurations is reported. Electrochemical properties are analysed using the outer-sphere redox probes Ru(NH3)6 2+/3+ (RuHex) and N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), with performances de-convoluted via accompanying physicochemical characterisation (Raman, TEM, SEM, AFM and XPS). The VG electrodes are fabricated using an electron cyclotron resonance chemical vapour deposition (ECR-CVD) methodology, creating vertical graphene with a range of differing heights, spacing and edge plane like-sites/defects (supported upon underlying SiO2/Si). We correlate the electrochemical reactivity/response of these novel VG configurations with the level of edge plane sites (%-edge) comprising their structure and calculate corresponding heterogeneous electron transfer (HET) rates, k 0. Taller VG structures with more condensed layer stacking (hence a larger global coverage of exposed edge plane sites) are shown to exhibit improved HET kinetics, supporting the claims that edge plane sites are the predominant source of electron transfer in carbon materials. A measured k 0 eff of ca. 4.00 × 10-3 cm s-1 (corresponding to an exposed surface coverage of active edge plane like-sites/defects (% θ edge) of 1.00%) was evident for the tallest and most closely stacked VG sample, with the inverse case true, where a VG electrode possessing large inter-aligned-graphene spacing and small flake heights exhibited only 0.08% of % θ edge and a k 0 eff value one order of magnitude slower at ca. 3.05 × 10-4 cm s-1. Control experiments are provided with conventional CVD (horizontal) grown graphene and the edge plane of highly ordered pyrolytic graphite (EPPG of HOPG), demonstrating that the novel VG electrodes exhibit ca. 3× faster k 0 than horizontal CVD graphene. EPPG exhibited the fastest HET kinetics, exhibiting ca. 2× larger k 0 than the best VG. These results are of significance to those working in the field of 2D-carbon electrochemistry and materials scientists, providing evidence that the macroscale electrochemical response of carbon-based electrodes is dependent on the edge plane content and showing that a range of structural configurations can be employed for tailored properties and applications.

7.
Nanoscale Adv ; 2(1): 264-273, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36133988

RESUMO

Monolayer hexagonal-boron nitride films (2D-hBN) are typically reported within the literature to be electrochemically inactive due to their considerable band gap (ca. 5.2-5.8 eV). It is demonstrated herein that introducing physical linear defects (PLDs) upon the basal plane surface of 2D-hBN gives rise to electrochemically useful signatures. The reason for this transformation from insulator to semiconductor (inferred from physicochemical and computational characterisation) is likely due to full hydrogenation and oxygen passivation of the boron and/or nitrogen at edge sites. This results in a decrease in the band gap (from ca. 6.11 to 2.36/2.84 eV; theoretical calculated values, for the fully hydrogenated oxygen passivation at the N or B respectively). The 2D-hBN films are shown to be tailored through the introduction of PLDs, with the electrochemical behaviour dependent upon the surface coverage of edge plane-sites/defects, which is correlated with electrochemical performance towards redox probes (hexaammineruthenium(iii) chloride and Fe2+/3+) and the hydrogen evolution reaction. This manuscript de-convolutes, for the first time, the fundamental electron transfer properties of 2D-hBN, demonstrating that through implementation of PLDs, one can beneficially tailor the electrochemical properties of this nanomaterial.

8.
Sci Rep ; 9(1): 15961, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31685906

RESUMO

Mono-, few-, and multilayer graphene is explored towards the electrochemical Hydrogen Evolution Reaction (HER). Careful physicochemical characterisation is undertaken during electrochemical perturbation revealing that the integrity of graphene is structurally compromised. Electrochemical perturbation, in the form of electrochemical potential scanning (linear sweep voltammetry), as induced when exploring the HER using monolayer graphene, creates defects upon the basal plane surface that increases the coverage of edge plane sites/defects resulting in an increase in the electrochemical reversibility of the HER process. This process of improved HER performance occurs up to a threshold, where substantial break-up of the basal sheet occurs, after which the electrochemical response decreases; this is due to the destruction of the sheet integrity and lack of electrical conductive pathways. Importantly, the severity of these changes is structurally dependent on the graphene variant utilised. This work indicates that multilayer graphene has more potential as an electrochemical platform for the HER, rather than that of mono- and few-layer graphene. There is huge potential for this knowledge to be usefully exploited within the energy sector and beyond.

9.
Sci Rep ; 9(1): 12814, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492903

RESUMO

The origin of electron transfer at Chemical Vapour Deposition (CVD) grown monolayer graphene using a polymer-free transfer methodology is explored through the selective electrodeposition of Molybdenum (di)oxide (MoO2). The electrochemical decoration of CVD monolayer graphene with MoO2 is shown to originate from the edge plane like- sites/defects. Edge plane decoration of MoO2 nanowires upon monolayer graphene is observed via electrochemical deposition over short time periods only (ca. -0.6 V for 1 second (vs. Ag/AgCl)). At more electrochemically negative potentials (ca. -1.0 V) or longer deposition times, a large MoO2 film is created/deposited on the graphene sheet, originating and expanding from the original nucleation points at edge plane like- sites/defects/wrinkles. Nanowire fabrication along the edge plane like- sites/defects of graphene is confirmed with Cyclic Voltammetry, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Raman Spectroscopy. Monitoring the electrochemical response towards [Ru(NH3)6]3+/2+ and comparing the heterogeneous electron transfer (HET) kinetics at CVD grown monolayer graphene prior and post nanowire fabrication reveals key understandings into the fundamental electrochemical properties of carbon materials. The HET kinetics ([Formula: see text]) at MoO2 nanowire decorated monolayer graphene sheets, when edge plane like- sites/defects have been coated/blocked with MoO2, are significantly reduced in comparison to the unmodified graphene alternative. Interestingly, MoO2 nucleation originates on the edge plane like- sites/defects of the graphene sheets, where the basal plane sites remain unaltered until the available edge plane like- sites/defects have been fully utilised; after which MoO2 deposition propagates towards and onto the basal planes, eventually covering the entire surface of the monolayer graphene surface. In such instances, there is no longer an observable electrochemical response. This work demonstrates the distinct electron transfer properties of edge and basal plane sites on CVD grown monolayer graphene, inferring favourable electrochemical reactivity at edge plane like- sites/defects and clarifying the origin of graphene electro-activity.

10.
Phys Chem Chem Phys ; 20(30): 20010-20022, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30022207

RESUMO

We report the fabrication, characterisation (SEM/EDX, TEM, XRD, XPS and Raman spectroscopy) and electrochemical properties of graphite and graphene paste electrodes with varying lateral flake sizes. The fabricated paste electrodes are electrochemically analysed using both outer-sphere and inner-sphere redox probes, namely; hexaammineruthenium(iii) chloride, N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), potassium ferrocyanide(ii) and ammonium ferrous(ii) sulphate. Upon comparison of different graphite paste electrodes, a clear correlation between the lateral flake sizes (La), ranging from 1.5 mm-0.5 µm, and electrochemical activity (heterogeneous electron transfer (HET) kinetics) is evident, where an improvement in the HET is observed at smaller lateral flake sizes. We infer that the beneficial response evident when employing laterally smaller flakes is due to an increased number of edge plane like-sites/defects available upon the electrode surface, facilitating electron transfer. Interestingly, given that the overall lateral flake sizes of the graphenes utilised (10.0-1.3 µm) were significantly smaller than those studied previously, an improvement in HET kinetics was also evident with the reduction of lateral flake size; the extent to which is redox-probe dependent. Improvements are observed up to a distinct point, termed the 'lateral size threshold' (ca. ≤2 µm) where the electrochemical reversible limit is approached. Further support is provided from density functional theory (DFT), exploring the electronic structure (i.e. HOMO-LUMO) as a function of flake size, which demonstrates that the coverage of edge plane like-sites/defects comprising the geometric structure of the relatively small graphene flakes is such that effectively the entire flake has become electrochemically active. In this study, the importance of lateral flake size with respect to electrochemical reactivity at carbon-based electrodes has been demonstrated alongside a structural relationship upon HET performance, a phenomenon that has not previously been described in the literature. Such work is both highly important and informative for the field of electrochemistry and electrode performance, with potential implications in a plethora of areas, ranging from novel renewable energy sources to electroanalytical sensing platforms.

11.
Biosensors (Basel) ; 8(2)2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29890706

RESUMO

Screen-printed electrochemical sensing platforms, due to their scales of economy and high reproducibility, can provide a useful approach to translate laboratory-based electrochemistry into the field. An important factor when utilising screen-printed electrodes (SPEs) is the determination of their real electrochemical surface area, which allows for the benchmarking of these SPEs and is an important parameter in quality control. In this paper, we consider the use of cyclic voltammetry and chronocoulometry to allow for the determination of the real electrochemical area of screen-printed electrochemical sensing platforms, highlighting to experimentalists the various parameters that need to be diligently considered and controlled in order to obtain useful measurements of the real electroactive area.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Eletrodos/estatística & dados numéricos
12.
J Fish Dis ; 41(6): 901-919, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28782801

RESUMO

Sea lice are a constraint on the sustainable growth of Scottish marine salmonid aquaculture. As part of an integrated pest management approach, farms coordinate procedures within spatial units. We present observations of copepodids being at relatively greater density than nauplii in upper waters, which informs the development of surface layer sea lice transmission modelling of Loch Linnhe, Scotland, for informing farm parasite management. A hydrodynamic model is coupled with a biological particle-tracking model, with characteristics of plankton sea lice. Simulations are undertaken for May and October 2011-2013, forced by local wind data collected for those periods. Particles are continually released from positions representing farm locations, weighted by relative farm counts, over a 2-week period and tracked for a further 5 days. A comparison is made between modelled relative concentrations against physical and biological surveys to provide confidence in model outputs. Connectivity between farm locations is determined in order to propose potential coordination areas. Generally, connectivity depends on flow patterns in the loch and decreases with increased farm separation. The connectivity indices are used to estimate the origins of the sea lice population composition at each site, which may influence medicinal regimens to avoid loss of efficacy.


Assuntos
Distribuição Animal , Copépodes/fisiologia , Ectoparasitoses/veterinária , Doenças dos Peixes/epidemiologia , Fatores Etários , Animais , Aquicultura , Copépodes/crescimento & desenvolvimento , Ectoparasitoses/epidemiologia , Hidrodinâmica , Modelos Biológicos , Escócia/epidemiologia
13.
Analyst ; 142(10): 1756-1764, 2017 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-28418064

RESUMO

Surfactant exfoliated 2D hexagonal Boron Nitride (2D-hBN) nanosheets are explored as a potential electrochemical sensing platform and evaluated towards the electroanalytical sensing of dopamine (DA) in the presence of the common interferents, ascorbic acid (AA) and uric acid (UA). Surfactant exfoliated 2D-hBN nanosheets (2-4 layers) fabricated using sodium cholate in aqueous media are electrically wired via a drop-casting modification process onto disposable screen-printed graphite electrodes (SPEs). We critically evaluate the performance of these 2D-hBN modified SPEs and demonstrate the effect of 'mass coverage' towards the detection of DA, AA and UA. Previous studies utilising surfactant-free (pristine) 2D-hBN modified SPEs have shown a beneficial effect towards the detection of DA, AA and UA when compared to the underlying/unmodified graphite-based electrode. We show that the fabrication route utilised to prepare 2D-hBN is a vital experimental consideration, such that the beneficial effect previously reported is considerably reduced when surfactant exfoliated 2D-hBN is utilised. We demonstrate for the first time, through implementation of control experiments in the form of surfactant modified graphite electrodes, that sodium cholate is a major contributing factor to the aforementioned detrimental behaviour. The significance here is not in the material per se, but the fundamental knowledge of the surfactant and surface coverage changing the electrochemical properties of the material under investigation. Given the wide variety of ionic and non-ionic surfactants that are utilised in the manufacture of novel 2D materials, the control experiments reported herein need to be performed in order to de-convolute the electrochemical response and effectively evaluate the 'underlying surface/surfactant/2D materials' electrocatalytic contribution.


Assuntos
Compostos de Boro/química , Dopamina/análise , Técnicas Eletroquímicas , Tensoativos/química , Ácido Ascórbico , Eletrodos , Grafite , Ácido Úrico
14.
R Soc Open Sci ; 4(11): 171128, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29291099

RESUMO

The modification of electrode surfaces is widely implemented in order to try and improve electron transfer kinetics and surface interactions, most recently using graphene related materials. Currently, the use of 'as is' graphene oxide (GO) has been largely overlooked, with the vast majority of researchers choosing to reduce GO to graphene or use it as part of a composite electrode. In this paper, 'as is' GO is explored and electrochemically characterized using a range of electrochemical redox probes, namely potassium ferrocyanide(II), N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), dopamine hydrochloride and epinephrine. Furthermore, the electroanalytical efficacy of GO is explored towards the sensing of dopamine hydrochloride and epinephrine via cyclic voltammetry. The electrochemical response of GO is benchmarked against pristine graphene and edge plane-/basal plane pyrolytic graphite (EPPG and BPPG respectively) alternatives, where the GO shows an enhanced electrochemical/electroanalytical response. When using GO as an electrode material, the electrochemical response of the analytes studied herein deviate from that expected and exhibit altered electrochemical responses. The oxygenated species encompassing GO strongly influence and dominate the observed voltammetry, which is crucially coverage dependent. GO electrocatalysis is observed, which is attributed to the presence of beneficial oxygenated species dictating the response in specific cases, demonstrating potential for advantageous electroanalysis to be realized. Note however, that crucial coverage based regions are observed at GO modified electrodes, owing to the synergy of edge plane sites and oxygenated species. We report the true beneficial electrochemistry of GO, which has enormous potential to be beneficially used in various electrochemical applications 'as is' rather than be simply used as a precursor to making graphene and is truly a fascinating member of the graphene family.

15.
Anal Chem ; 88(19): 9729-9737, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27659497

RESUMO

Crystalline 2D hexagonal boron nitride (2D-hBN) nanosheets are explored as a potential electrocatalyst toward the electroanalytical sensing of dopamine (DA). The 2D-hBN nanosheets are electrically wired via a drop-casting modification process onto a range of commercially available carbon supporting electrodes, including glassy carbon (GC), boron-doped diamond (BDD), and screen-printed graphitic electrodes (SPEs). 2D-hBN has not previously been explored toward the electrochemical detection/electrochemical sensing of DA. We critically evaluate the potential electrocatalytic performance of 2D-hBN modified electrodes, the effect of supporting carbon electrode platforms, and the effect of "mass coverage" (which is commonly neglected in the 2D material literature) toward the detection of DA. The response of 2D-hBN modified electrodes is found to be largely dependent upon the interaction between 2D-hBN and the underlying supporting electrode material. For example, in the case of SPEs, modification with 2D-hBN (324 ng) improves the electrochemical response, decreasing the electrochemical oxidation potential of DA by ∼90 mV compared to an unmodified SPE. Conversely, modification of a GC electrode with 2D-hBN (324 ng) resulted in an increased oxidation potential of DA by ∼80 mV when compared to the unmodified electrode. We explore the underlying mechanisms of the aforementioned examples and infer that electrode surface interactions and roughness factors are critical considerations. 2D-hBN is utilized toward the sensing of DA in the presence of the common interferents ascorbic acid (AA) and uric acid (UA). 2D-hBN is found to be an effective electrocatalyst in the simultaneous detection of DA and UA at both pH 5.0 and 7.4. The peak separations/resolution between DA and UA increases by ∼70 and 50 mV (at pH 5.0 and 7.4, respectively, when utilizing 108 ng of 2D-hBN) compared to unmodified SPEs, with a particularly favorable response evident in pH 5.0, giving rise to a significant increase in the peak current of DA. The limit of detection (3σ) is found to correspond to 0.65 µM for DA in the presence of UA. However, it is not possible to deconvolute the simultaneous detection of DA and AA. The observed electrocatalytic effect at 2D-hBN has not previously been reported in the literature when supported upon carbon or any other electrode. We provide valuable insights into the modifier-substrate interactions of this material, essential for those designing, fabricating, and consequently performing electrochemical experiments utilizing 2D-hBN and related 2D materials.


Assuntos
Compostos de Boro/química , Dopamina/análise , Técnicas Eletroquímicas , Ácido Ascórbico/análise , Tamanho da Partícula , Propriedades de Superfície
16.
Biosensors (Basel) ; 6(3)2016 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-27589815

RESUMO

We explore the fabrication, physicochemical characterisation (SEM, Raman, EDX and XPS) and electrochemical application of hand-drawn pencil electrodes (PDEs) upon an ultra-flexible polyester substrate; investigating the number of draws (used for their fabrication), the pencil grade utilised (HB to 9B) and the electrochemical properties of an array of batches (i.e, pencil boxes). Electrochemical characterisation of the PDEs, using different batches of HB grade pencils, is undertaken using several inner- and outer-sphere redox probes and is critically compared to screen-printed electrodes (SPEs). Proof-of-concept is demonstrated for the electrochemical sensing of dopamine and acetaminophen using PDEs, which are found to exhibit competitive limits of detection (3σ) upon comparison to SPEs. Nonetheless, it is important to note that a clear lack of reproducibility was demonstrated when utilising these PDEs fabricated using the HB pencils from different batches. We also explore the suitability and feasibility of a pencil-drawn reference electrode compared to screen-printed alternatives, to see if one can draw the entire sensing platform. This article reports a critical assessment of these PDEs against that of its screen-printed competitors, questioning the overall feasibility of PDEs' implementation as a sensing platform.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Eletrodos , Acetaminofen/química , Dopamina/química , Eletroquímica , Reprodutibilidade dos Testes
17.
Nanoscale ; 8(33): 15241-51, 2016 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-27487988

RESUMO

Molybdenum (di)oxide (MoO2) nanowires are fabricated onto graphene-like and graphite screen-printed electrodes (SPEs) for the first time, revealing crucial insights into the electrochemical properties of carbon/graphitic based materials. Distinctive patterns observed in the electrochemical process of nanowire decoration show that electron transfer occurs predominantly on edge plane sites when utilising SPEs fabricated/comprised of graphitic materials. Nanowire fabrication along the edge plane sites (and on edge plane like-sites/defects) of graphene/graphite is confirmed with Cyclic Voltammetry, Scanning Electron Microscopy (SEM) and Raman Spectroscopy. Comparison of the heterogeneous electron transfer (HET) rate constants (k°) at unmodified and nanowire coated SPEs show a reduction in the electrochemical reactivity of SPEs when the edge plane sites are effectively blocked/coated with MoO2. Throughout the process, the basal plane sites of the graphene/graphite electrodes remain relatively uncovered; except when the available edge plane sites have been utilised, in which case MoO2 deposition grows from the edge sites covering the entire surface of the electrode. This work clearly illustrates the distinct electron transfer properties of edge and basal plane sites on graphitic materials, indicating favourable electrochemical reactivity at the edge planes in contrast to limited reactivity at the basal plane sites. In addition to providing fundamental insights into the electron transfer properties of graphite and graphene-like SPEs, the reported simple, scalable, and cost effective formation of unique and intriguing MoO2 nanowires realised herein is of significant interest for use in both academic and commercial applications.

18.
Nanoscale ; 8(31): 14767-77, 2016 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-27448174

RESUMO

Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm(-2) modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.

19.
Analyst ; 141(13): 4055-64, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27271819

RESUMO

Inspired by recent reports concerning the utilisation of hand drawn pencil macroelectrodes (PDEs), we report the fabrication, characterisation (physicochemical and electrochemical) and implementation (electrochemical sensing) of various PDEs drawn upon a flexible polyester substrate. Electrochemical characterisation reveals that there are no quantifiable electrochemical responses upon utilising these PDEs with an electroactive analyte that requires an electrochemical oxidation step first, therefore the PDEs have been examined towards the electroactive redox probes hexaammineruthenium(iii) chloride, potassium ferricyanide and ammonium iron(ii) sulfate. For the first time, characterisation of the number of drawn pencil layers and the grade of pencil are examined; these parameters are commonly overlooked when utilising PDEs. It is demonstrated that a PDE drawn ten times with a 6B pencil presented the most advantageous electrochemical platform, in terms of electrochemical reversibility and peak height/analytical signal. In consideration of the aforementioned limitation, analytes requiring an electrochemical reduction as the first process were solely analysed. We demonstrate the beneficial electroanalytical capabilities of these PDEs towards p-benzoquinone and the simultaneous detection of heavy metals, namely lead(ii) and cadmium(ii), all of which are explored for the first time utilising PDEs. Initially, the detection limits of this system were higher than desired for electroanalytical platforms, however upon implementation of the PDEs in a back-to-back configuration (in which two PDEs are placed back-to-back sharing a single connection to the potentiostat), the detection limits for lead(ii) and cadmium(ii) correspond to 10 µg L(-1) and 98 µg L(-1) respectively within model aqueous (0.1 M HCl) solutions.

20.
Br J Dermatol ; 174(4): 763-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26987559

RESUMO

The Evidence Based Update on Skin Surgery was held in Nottingham in May 2015. The meeting featured presentations on new diagnostic techniques, trials in development, discussions of recently published trials, and a question and answer session with an expert panel. This report aims to summarize the presentations and discussions from the day.


Assuntos
Procedimentos Cirúrgicos Dermatológicos/métodos , Medicina Baseada em Evidências , Dermatopatias/cirurgia , Previsões , Humanos , Microscopia Confocal/métodos , Cuidados Pós-Operatórios , Cuidados Pré-Operatórios/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto , Biópsia de Linfonodo Sentinela/métodos , Análise Espectral Raman/métodos , Assistência Terminal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...