Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 24(Pt 4): 796-801, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28664887

RESUMO

A technique for measuring interdiffusion in multilayer materials during rapid heating using X-ray reflectivity is described. In this technique the sample is bent to achieve a range of incident angles simultaneously, and the scattered intensity is recorded on a fast high-dynamic-range mixed-mode pixel array detector. Heating of the multilayer is achieved by electrical resistive heating of the silicon substrate, monitored by an infrared pyrometer. As an example, reflectivity data from Al/Ni heated at rates up to 200 K s-1 are presented. At short times the interdiffusion coefficient can be determined from the rate of decay of the reflectivity peaks, and it is shown that the activation energy for interdiffusion is consistent with a grain boundary diffusion mechanism. At longer times the simple analysis no longer applies because the evolution of the reflectivity pattern is complicated by other processes, such as nucleation and growth of intermetallic phases.

2.
Phys Rev Lett ; 103(25): 256103, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-20366266

RESUMO

Pulsed laser deposition (PLD) of homoepitaxial SrTiO(3) 001 was studied with in situ x-ray specular reflectivity and surface diffuse x-ray scattering. Unlike prior reflectivity-based studies, these measurements access both time and length scales of the evolution of the surface morphology during growth. In particular, we show that this technique allows direct measurements of the diffusivity for both inter- and intralayer transport. Our results explicitly limit the possible role of island breakup, demonstrate the key roles played by nucleation and coarsening in PLD, and place an upper bound on the Ehrlich-Schwoebel barrier for downhill interlayer diffusion.

3.
Phys Rev Lett ; 93(12): 122001, 2004 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-15447252

RESUMO

We report a virtual Compton scattering study of the proton at low c.m. energies. We have determined the structure functions P(LL)-P(TT)/epsilon and P(LT), and the electric and magnetic generalized polarizabilities (GPs) alpha(E)(Q2) and beta(M)(Q2) at momentum transfer Q(2)=0.92 and 1.76 GeV2. The electric GP shows a strong falloff with Q2, and its global behavior does not follow a simple dipole form. The magnetic GP shows a rise and then a falloff; this can be interpreted as the dominance of a long-distance diamagnetic pion cloud at low Q2, compensated at higher Q2 by a paramagnetic contribution from piN intermediate states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...