Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Physiol ; 213(3): 834-43, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17786952

RESUMO

Sugar consumption and subsequent sugar metabolism are known to regulate the expression of genes involved in intestinal sugar absorption and delivery. Here we investigate the hypothesis that sugar-sensing detectors in membranes facing the intestinal lumen or the bloodstream can also modulate intestinal sugar absorption. We used wild-type and GLUT2-null mice, to show that dietary sugars stimulate the expression of sucrase-isomaltase (SI) and L-pyruvate kinase (L-PK) by GLUT2-dependent mechanisms, whereas the expression of GLUT5 and SGLT1, did not rely on the presence of GLUT2. By providing sugar metabolites, sugar transporters, including GLUT2, fuelled a sensing pathway. In Caco2/TC7 enterocytes, we could disconnect the sensing triggered by detector from that produced by metabolism, and found that GLUT2 generated a metabolism-independent pathway to stimulate the expression of SI and L-PK. In cultured enterocytes, both apical and basolateral fructose could increase the expression of GLUT5, conversely, basolateral sugar administration could stimulate the expression of GLUT2. Finally, we located the sweet-taste receptors T1R3 and T1R2 in plasma membranes, and we measured their cognate G alpha Gustducin mRNA levels. Furthermore, we showed that a T1R3 inhibitor altered the fructose-induced expression of SGLT1, GLUT5, and L-PK. Intestinal gene expression is thus controlled by a combination of at least three sugar-signaling pathways triggered by sugar metabolites and membrane sugar receptors that, according to membrane location, determine sugar-sensing polarity. This provides a rationale for how intestine adapts sugar delivery to blood and dietary sugar provision.


Assuntos
Polaridade Celular , Enterócitos/metabolismo , Hexoses/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Sacarose/metabolismo , Edulcorantes/metabolismo , Animais , Células CACO-2 , Clonagem Molecular , Frutose/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 2/química , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Transportador de Glucose Tipo 5/genética , Transportador de Glucose Tipo 5/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Jejuno/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Transporte de Monossacarídeos/genética , Oligo-1,6-Glucosidase/genética , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/metabolismo , Sacarase/genética , Transfecção
2.
Traffic ; 5(1): 10-9, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14675421

RESUMO

We studied the role of the karyopherin alpha2 nuclear import carrier (also known as importin alpha2) in glucose signaling. In mhAT3F hepatoma cells, GFP-karyopherin alpha2 accumulated massively in the cytoplasm within minutes of glucose extracellular addition and returned to the nucleus after glucose removal. In contrast, GFP-karyopherin alpha1 distribution was unaffected regardless of glucose concentration. Glucose increased GFP-karyopherin alpha2 nuclear efflux by a factor 80 and its shuttling by a factor 4. These glucose-induced movements were not due to glycolytic ATP production. The mechanism involved was leptomycin B-insensitive, but phosphatase- and energy-dependent. HepG2 and COS-7 cells displayed no glucose-induced GFP-karyopherin alpha2 movements. In pancreatic MIN-6 cells, the glucose-induced movements of karyopherin alpha2 and the stimulation of glucose-induced gene transcription were simultaneously lost between passages 28 and 33. Thus, extracellular glucose regulates a nuclear transport pathway by increasing the nuclear efflux and shuttling of karyopherin alpha2 in cells in which glucose can stimulate the transcription of sugar-responsive genes.


Assuntos
Glucose/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Pâncreas/citologia , alfa Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular , Inibidores Enzimáticos/metabolismo , Transportador de Glucose Tipo 2 , Hepatócitos/citologia , Humanos , Processamento de Imagem Assistida por Computador , Fígado/citologia , Camundongos , Camundongos Transgênicos , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Ácido Okadáico/metabolismo , Pâncreas/metabolismo , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , alfa Carioferinas/genética
3.
Biochem J ; 375(Pt 1): 167-74, 2003 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12820898

RESUMO

In intestinal cells, levels of the fructose transporter GLUT5 are increased by glucose and to a greater extent by fructose. We investigated the mechanism by which fructose increases GLUT5 expression. In Caco-2 cells, fructose and glucose increased activity of the -2500/+41 GLUT5 promoter to the same extent. cAMP also activated the GLUT5 promoter. However, if a protein kinase A inhibitor was used to block cAMP signalling, extensive GLUT5 mRNA degradation was observed, with no change in basal transcription levels demonstrating the involvement of cAMP in GLUT5 mRNA stability. Indeed, the half-life of GLUT5 mRNA was correlated ( R2=0.9913) with cellular cAMP levels. Fructose increased cAMP concentration more than glucose, accounting for the stronger effect of fructose when compared with that of glucose on GLUT5 production. We identified several complexes between GLUT5 3'-UTR RNA (where UTR stands for untranslated region) and cytosolic proteins that might participate in mRNA processing. Strong binding of a 140 kDa complex I was observed in sugar-deprived cells, with levels of binding lower in the presence of fructose and glucose by factors of 12 and 6 respectively. This may account for differences in the effects of fructose and glucose. In contrast, the amounts of two complexes of 96 and 48 kDa increased equally after stimulation with either glucose or fructose. Finally, PABP (polyadenylated-binding protein)-interacting protein 2, a destabilizing partner of PABP, was identified as a component of GLUT5 3'-UTR RNA-protein complexes. We conclude that the post-transcriptional regulation of GLUT5 by fructose involves increases in mRNA stability mediated by the cAMP pathway and Paip2 (PABP-interacting protein 2) binding.


Assuntos
AMP Cíclico/metabolismo , Frutose/farmacologia , Proteínas de Transporte de Monossacarídeos/genética , Estabilidade de RNA , Proteínas de Ligação a RNA/fisiologia , Regiões 3' não Traduzidas/metabolismo , Células CACO-2 , Metabolismo dos Carboidratos , Diferenciação Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glucose/farmacologia , Transportador de Glucose Tipo 5 , Humanos , Proteínas de Transporte de Monossacarídeos/metabolismo , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sistemas do Segundo Mensageiro , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA