Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(7): 2464-2469, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30679273

RESUMO

Quantifying the dynamics of sequestered CO2 plumes is critical for safe long-term storage, providing guidance on plume extent, and detecting stratigraphic seal failure. However, existing seismic monitoring methods based on wave reflection or transmission probe a limited rock volume and their sensitivity decreases as CO2 saturation increases, decreasing their utility in quantitative plume mass estimation. Here we show that seismic scattering coda waves, acquired during continuous borehole monitoring, are able to illuminate details of the CO2 plume during a 74-h CO2 injection experiment at the Frio-II well Dayton, TX. Our study reveals a continuous velocity reduction during the dynamic injection of CO2, a result that augments and dramatically improves upon prior analyses based on P-wave arrival times. We show that velocity reduction is nonlinearly correlated with the injected cumulative CO2 mass and attribute this correlation to the fact that coda waves repeatedly sample the heterogeneous distribution of cumulative CO2 in the reservoir zone. Lastly, because our approach does not depend on P-wave arrival times or require well-constrained wave reflections it can be used with many source-receiver geometries including those external to the reservoir, which reduces the risk introduced by in-reservoir monitoring wells. Our results provide an approach for quantitative CO2 monitoring and plume evolution that increases safety and long-term planning for CO2 injection and storage.

2.
Sci Rep ; 7(1): 11620, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28912436

RESUMO

Ambient-noise-based seismic monitoring of the near surface often has limited spatiotemporal resolutions because dense seismic arrays are rarely sufficiently affordable for such applications. In recent years, however, distributed acoustic sensing (DAS) techniques have emerged to transform telecommunication fiber-optic cables into dense seismic arrays that are cost effective. With DAS enabling both high sensor counts ("large N") and long-term operations ("large T"), time-lapse imaging of shear-wave velocity (V S ) structures is now possible by combining ambient noise interferometry and multichannel analysis of surface waves (MASW). Here we report the first end-to-end study of time-lapse V S imaging that uses traffic noise continuously recorded on linear DAS arrays over a three-week period. Our results illustrate that for the top 20 meters the V S models that is well constrained by the data, we obtain time-lapse repeatability of about 2% in the model domain-a threshold that is low enough for observing subtle near-surface changes such as water content variations and permafrost alteration. This study demonstrates the efficacy of near-surface seismic monitoring using DAS-recorded ambient noise.

3.
Environ Sci Technol ; 47(1): 314-21, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22681490

RESUMO

The risk of CO(2) leakage from a properly permitted deep geologic storage facility is expected to be very low. However, if leakage occurs it could potentially impact potable groundwater quality. Dissolved CO(2) in groundwater decreases pH, which can mobilize naturally occurring trace metals commonly contained in aquifer sediments. Observing such processes requires adequate monitoring strategies. Here, we use laboratory and field experiments to explore the sensitivity of time-lapse complex resistivity responses for remotely monitoring dissolved CO(2) distribution and geochemical transformations that may impact groundwater quality. Results show that electrical resistivity and phase responses correlate well with dissolved CO(2) injection processes. Specifically, resistivity initially decreases due to increase of bicarbonate and dissolved species. As pH continues to decrease, the resistivity rebounds toward initial conditions due to the transition of bicarbonate into nondissociated carbonic acid, which reduces the total concentration of dissociated species and thus the water conductivity. An electrical phase decrease is also observed, which is interpreted to be driven by the decrease of surface charge density as well as potential mineral dissolution and ion exchange. Both laboratory and field experiments demonstrate the potential of field complex resistivity method for remotely monitoring changes in groundwater quality due to CO(2) leakage.


Assuntos
Dióxido de Carbono/análise , Água Subterrânea/análise , Poluentes Químicos da Água/análise , Sequestro de Carbono , Condutividade Elétrica , Monitoramento Ambiental , Fenômenos Geológicos , Concentração de Íons de Hidrogênio
4.
Nature ; 454(7201): 204-8, 2008 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-18615082

RESUMO

Measuring stress changes within seismically active fault zones has been a long-sought goal of seismology. One approach is to exploit the stress dependence of seismic wave velocity, and we have investigated this in an active source cross-well experiment at the San Andreas Fault Observatory at Depth (SAFOD) drill site. Here we show that stress changes are indeed measurable using this technique. Over a two-month period, we observed an excellent anti-correlation between changes in the time required for a shear wave to travel through the rock along a fixed pathway (a few microseconds) and variations in barometric pressure. We also observed two large excursions in the travel-time data that are coincident with two earthquakes that are among those predicted to produce the largest coseismic stress changes at SAFOD. The two excursions started approximately 10 and 2 hours before the events, respectively, suggesting that they may be related to pre-rupture stress induced changes in crack properties, as observed in early laboratory studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...