Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Int J Obes (Lond) ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879729

RESUMO

BACKGROUND AND OBJECTIVES: Dual amylin and calcitonin receptor agonists (DACRAs) are therapeutic candidates in the treatment of obesity with beneficial effects on weight loss superior to suppression of food intake. Hence, suggesting effects on energy expenditure by possibly targeting mitochondria in metabolically active tissue. METHODS: Male rats with HFD-induced obesity received a DACRA, KBP-336, every third day for 8 weeks. Upon study end, mitochondrial respiratory capacity (MRC), - enzyme activity, - transcriptional factors, and -content were measured in perirenal (pAT) and inguinal adipose tissue. A pair-fed group was included to examine food intake-independent effects of KBP-336. RESULTS: A vehicle-corrected weight loss (23.4 ± 2.8%) was achieved with KBP-336, which was not observed to the same extent with the food-restricted weight loss (12.4 ± 2.8%) (P < 0.001). Maximal coupled respiration supported by carbohydrate and lipid-linked substrates was increased after KBP-336 treatment independent of food intake in pAT (P < 0.01). Moreover, oligomycin-induced leak respiration and the activity of citrate synthase and ß-hydroxyacetyl-CoA-dehydrogenase were increased with KBP-336 treatment (P < 0.05). These effects occurred without changes in mitochondrial content in pAT. CONCLUSIONS: These findings demonstrate favorable effects of KBP-336 on MRC in adipose tissue, indicating an increased energy expenditure and capacity to utilize fatty acids. Thus, providing more mechanistic insight into the DACRA-induced weight loss.

2.
Noncoding RNA ; 9(5)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37736899

RESUMO

Obesity is an important risk factor for cardiovascular disease and type 2 diabetes mellitus. Even a modest weight loss of 5-15% improves metabolic health, but circulating markers to indicate weight loss efficiency are lacking. MicroRNAs, small non-coding post-transcriptional regulators of gene expression, are secreted from tissues into the circulation and may be potential biomarkers for metabolic health. However, it is not known which specific microRNA species are reproducibly changed in levels by weight loss. In this study, we performed a systematic review and meta-analysis to investigate the microRNAs associated with weight loss by comparing baseline to follow-up levels following intervention-driven weight loss. This systematic review was performed according to the PRISMA guidelines with searches in PubMed and SCOPUS. The primary search resulted in a total of 697 articles, which were screened according to the prior established inclusion and exclusion criteria. Following the screening of articles, the review was based on the inclusion of 27 full-text articles, which were evaluated for quality and the risk of bias. We performed systematic data extraction, whereafter the relative values for miRNAs were calculated. A meta-analysis was performed for the miRNA species investigated in three or more studies: miR-26a, miR-126, and miR-223 were overall significantly increased following weight loss, while miR-142 was significantly decreased after weight loss. miR-221, miR-140, miR-122, and miR-146 were not significantly changed by intervention-driven weight loss. These results indicate that few miRNAs are significantly changed during weight loss.

3.
Cells ; 12(7)2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-37048055

RESUMO

BACKGROUND: Women with polycystic ovary syndrome (PCOS) often change their metabolic profile over time to decrease levels of androgens while often gaining a propensity for the development of the metabolic syndrome. Recent discoveries indicate that microRNAs (miRNAs) play a role in the development of PCOS and constitute potential biomarkers for PCOS. We aimed to identify miRNAs associated with the development of an impaired metabolic profile in women with PCOS, in a follow-up study, compared with women without PCOS. METHODS AND MATERIALS: Clinical measurements of PCOS status and metabolic disease were obtained twice 6 years apart in a cohort of 46 women with PCOS and nine controls. All participants were evaluated for degree of metabolic disease (hypertension, dyslipidemia, central obesity, and impaired glucose tolerance). MiRNA levels were measured using Taqman® Array cards of 96 pre-selected miRNAs associated with PCOS and/or metabolic disease. RESULTS: Women with PCOS decreased their levels of androgens during follow-up. Twenty-six of the miRNAs were significantly changed in circulation in women with PCOS during the follow-up, and twenty-four of them had decreased, while levels did not change in the control group. Four miRNAs were significantly different at baseline between healthy controls and women with PCOS; miR-103-3p, miR-139-5p, miR-28-3p, and miR-376a-3p, which were decreased in PCOS. After follow-up, miR-28-3p, miR-139-5p, and miR-376a-3p increased in PCOS women to the levels observed in healthy controls. Of these, miR-139-5p correlated with total testosterone levels (rho = 0.50, padj = 0.013), while miR-376-3p correlated significantly with the waist-hip ratio at follow-up (rho = 0.43, padj = 0.01). Predicted targets of miR-103-3p, miR-139-5p, miR-28-3p, and miR-376a-3p were enriched in pathways associated with Insulin/IGF signaling, interleukin signaling, the GNRH receptor pathways, and other signaling pathways. MiRNAs altered during follow-up in PCOS patients were enriched in pathways related to immune regulation, gonadotropin-releasing hormone signaling, tyrosine kinase signaling, and WNT signaling. CONCLUSIONS: These studies indicate that miRNAs associated with PCOS and androgen metabolism overall decrease during a 6-year follow-up, reflecting the phenotypic change in PCOS individuals towards a less hyperandrogenic profile.


Assuntos
MicroRNA Circulante , MicroRNAs , Síndrome do Ovário Policístico , Humanos , Feminino , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , MicroRNA Circulante/genética , Estudos Longitudinais , Seguimentos , MicroRNAs/genética , MicroRNAs/metabolismo , Estudos de Coortes , Androgênios
4.
J Endocrinol ; 256(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36346274

RESUMO

Different types of small non-coding RNAs, especially miRNAs, may be found in the circulation, either protein-bound or enclosed in extracellular vesicles. During gestation, and particularly during gestational diabetes mellitus (GDM), the levels of several miRNAs are altered. Worldwide the incidence of GDM is increasing, in part driven by the current obesity epidemic. This is a point of public health concern because offspring of women with GDM frequently suffer from short- and long-term complications of maternal GDM. This has prompted the investigation of whether levels of specific miRNA species, detected early in gestation, may be used as diagnostic or prognostic markers for the development of GDM. Here, we summarize the mechanisms of RNA secretion and review circulating miRNAs associated with GDM. Several miRNAs are associated with GDM: miR-29a-3p and miR-29b-3p are generally upregulated in GDM pregnancies, also when measured prior to the development of GDM, while miR-16-5p is consistently upregulated in GDM pregnancies, especially in late gestation. miR-330-3p in circulation is increased in late gestation GDM women, especially in those with poor insulin secretion. miR-17-5p, miR-19a/b-3p, miR-223-3p, miR-155-5p, miR-125-a/b-5p, miR-210-3p and miR-132 are also associated with GDM, but less so and with more contradictory results reported. There could be a publication bias as miRNAs identified early are investigated the most, suggesting that it is likely that additional, more recently detected miRNAs could also be associated with GDM. Thus, circulating miRNAs show potential as biomarkers of GDM diagnosis or prognosis, especially multiple miRNAs containing prediction algorithms show promise, but further studies are needed.


Assuntos
MicroRNA Circulante , Diabetes Gestacional , MicroRNAs , Gravidez , Feminino , Humanos , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/genética , MicroRNA Circulante/genética , Biomarcadores , MicroRNAs/genética , Obesidade
5.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232358

RESUMO

In rats, the time of birth is characterized by a transient rise in beta cell replication, as well as beta cell neogenesis and the functional maturation of the endocrine pancreas. However, the knowledge of the gene expression during this period of beta cell expansion is incomplete. The aim was to characterize the perinatal rat pancreas transcriptome and to identify regulatory pathways differentially regulated at the whole organ level in the offspring of mothers fed a regular control diet (CO) and of mothers fed a low-protein diet (LP). We performed mRNA expression profiling via the microarray analysis of total rat pancreas samples at embryonic day (E) 20 and postnatal days (P) 0 and 2. In the CO group, pancreas metabolic pathways related to sterol and lipid metabolism were highly enriched, whereas the LP diet induced changes in transcripts involved in RNA transcription and gene regulation, as well as cell migration and apoptosis. Moreover, a number of individual transcripts were markedly upregulated at P0 in the CO pancreas: growth arrest specific 6 (Gas6), legumain (Lgmn), Ets variant gene 5 (Etv5), alpha-fetoprotein (Afp), dual-specificity phosphatase 6 (Dusp6), and angiopoietin-like 4 (Angptl4). The LP diet induced the downregulation of a large number of transcripts, including neurogenin 3 (Neurog3), Etv5, Gas6, Dusp6, signaling transducer and activator of transcription 3 (Stat3), growth hormone receptor (Ghr), prolactin receptor (Prlr), and Gas6 receptor (AXL receptor tyrosine kinase; Axl), whereas upregulated transcripts were related to inflammatory responses and cell motility. We identified differentially regulated genes and transcriptional networks in the perinatal pancreas. These data revealed marked adaptations of exocrine and endocrine in the pancreas to the low-protein diet, and the data can contribute to identifying novel regulators of beta cell mass expansion and functional maturation and may provide a valuable tool in the generation of fully functional beta cells from stem cells to be used in replacement therapy.


Assuntos
Dieta com Restrição de Proteínas , Ilhotas Pancreáticas , Angiopoietinas/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Feminino , Desenvolvimento Fetal , Expressão Gênica , Ilhotas Pancreáticas/metabolismo , Pâncreas/metabolismo , Gravidez , RNA Mensageiro/genética , Ratos , Receptores da Prolactina/genética , Receptores da Somatotropina/metabolismo , Esteróis/metabolismo , Fatores de Transcrição/metabolismo , alfa-Fetoproteínas/metabolismo
6.
Am J Physiol Cell Physiol ; 323(2): C367-C377, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35704699

RESUMO

The microRNA-29 family members miR-29a-3p, miR-29b-3p, and miR-29c-3p are ubiquitously expressed and consistently increased in various tissues and cell types in conditions of metabolic disease, obesity, insulin resistance, and type 2 diabetes. In pancreatic ß cells, miR-29a is required for normal exocytosis, but increased levels are associated with impaired ß-cell function. Similarly, in liver, miR-29 species are higher in models of insulin resistance and type 2 diabetes, and either knock-out or depletion using a microRNA inhibitor improves hepatic insulin resistance. In skeletal muscle, miR-29 family upregulation is associated with insulin resistance and altered substrate oxidation, and similarly, in adipocytes, overexpression of miR-29a leads to insulin resistance. Blocking miR-29a using nucleic acid antisense therapeutics show promising results in preclinical animal models of obesity and type 2 diabetes, although the widespread expression pattern of miR-29 family members complicates the exploration of single target tissues. However, in fibrotic diseases, such as in late complications of diabetes and metabolic disease (diabetic kidney disease, nonalcoholic steatohepatitis), miR-29 species expression is suppressed by TGF-ß allowing increased extracellular matrix collagen to form. In the clinical setting, circulating levels of miR-29a and miR-29b are consistently increased in type 2 diabetes and in gestational diabetes and are also possible prognostic markers for deterioration of glucose tolerance. In conclusion, miR-29 family miRNAs play an essential role in various organs relevant to intermediary metabolism and its upregulation contributes to impaired glucose metabolism, whereas it suppresses fibrosis development. Thus, a correct balance of levels of miR-29 family miRNA seems important for cellular and organ homeostasis in metabolism.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Células Secretoras de Insulina , MicroRNAs , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Fibrose , Resistência à Insulina/genética , Células Secretoras de Insulina/metabolismo , MicroRNAs/genética , Obesidade/metabolismo
7.
Front Endocrinol (Lausanne) ; 13: 853863, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399953

RESUMO

Machine learning (ML)-workflows enable unprejudiced/robust evaluation of complex datasets. Here, we analyzed over 490,000,000 data points to compare 10 different ML-workflows in a large (N=11,652) training dataset of human pancreatic single-cell (sc-)transcriptomes to identify genes associated with the presence or absence of insulin transcript(s). Prediction accuracy/sensitivity of each ML-workflow was tested in a separate validation dataset (N=2,913). Ensemble ML-workflows, in particular Random Forest ML-algorithm delivered high predictive power (AUC=0.83) and sensitivity (0.98), compared to other algorithms. The transcripts identified through these analyses also demonstrated significant correlation with insulin in bulk RNA-seq data from human islets. The top-10 features, (including IAPP, ADCYAP1, LDHA and SST) common to the three Ensemble ML-workflows were significantly dysregulated in scRNA-seq datasets from Ire-1αß-/- mice that demonstrate dedifferentiation of pancreatic ß-cells in a model of type 1 diabetes (T1D) and in pancreatic single cells from individuals with type 2 Diabetes (T2D). Our findings provide direct comparison of ML-workflows in big data analyses, identify key elements associated with insulin transcription and provide workflows for future analyses.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Algoritmos , Animais , Diabetes Mellitus Tipo 2/genética , Humanos , Insulina/genética , Aprendizado de Máquina , Camundongos
8.
Cell Mol Gastroenterol Hepatol ; 13(5): 1530-1553.e4, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35032693

RESUMO

BACKGROUND & AIMS: Pancreatic islet ß-cells are factories for insulin production; however, ectopic expression of insulin also is well recognized. The gallbladder is a next-door neighbor to the developing pancreas. Here, we wanted to understand if gallbladders contain functional insulin-producing cells. METHODS: We compared developing and adult mouse as well as human gallbladder epithelial cells and islets using immunohistochemistry, flow cytometry, enzyme-linked immunosorbent assays, RNA sequencing, real-time polymerase chain reaction, chromatin immunoprecipitation, and functional studies. RESULTS: We show that the epithelial lining of developing, as well as adult, mouse and human gallbladders naturally contain interspersed cells that retain the capacity to actively transcribe, translate, package, and release insulin. We show that human gallbladders also contain functional insulin-secreting cells with the potential to naturally respond to glucose in vitro and in situ. Notably, in a non-obese diabetic (NOD) mouse model of type 1 diabetes, we observed that insulin-producing cells in the gallbladder are not targeted by autoimmune cells. Interestingly, in human gallbladders, insulin splice variants are absent, although insulin splice forms are observed in human islets. CONCLUSIONS: In summary, our biochemical, transcriptomic, and functional data in mouse and human gallbladder epithelial cells collectively show the evolutionary and developmental similarities between gallbladder and the pancreas that allow gallbladder epithelial cells to continue insulin production in adult life. Understanding the mechanisms regulating insulin transcription and translation in gallbladder epithelial cells would help guide future studies in type 1 diabetes therapy.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Animais , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Células Epiteliais/metabolismo , Vesícula Biliar/metabolismo , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos NOD
9.
STAR Protoc ; 2(4): 100910, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34746868

RESUMO

MicroRNAs (miRNAs) are elements of the gene regulatory network and manipulating their abundance is essential toward elucidating their role in patho-physiological conditions. We present a detailed workflow that identifies important miRNAs using a machine learning algorithm. We then provide optimized techniques to validate the identified miRNAs through over-expression/loss-of-function studies. Overall, these protocols apply to any field in biology where high-dimensional data are produced. For complete details on the use and execution of this protocol, please refer to Wong et al. (2021a).


Assuntos
Perfilação da Expressão Gênica/métodos , Aprendizado de Máquina , MicroRNAs/genética , Transcriptoma/genética , Algoritmos , Técnicas de Cultura de Células/métodos , Células Cultivadas , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes/genética , Humanos , Ilhotas Pancreáticas/citologia , Fluxo de Trabalho
10.
J Nutr Biochem ; 98: 108817, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34271100

RESUMO

Visible impairments in skin appearance, as well as a subtle decline in its functionality at the molecular level, are hallmarks of skin aging. Activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-pathway, which is important in controlling inflammation and oxidative stress that occur during aging, can be triggered by sulforaphane (SFN), an isothiocyanate found in plants from the Brassicaceae family. This study aimed to assess the effects of SFN intake on age-related skin alterations. Male C57BL6 young (2 months) and old (21 months) mice were treated for 3 months with SFN diet (442.5 mg per kg) or control diet. The antioxidant capacities of the skin were increased in old SFN-treated animals as measured by mRNA levels of Nrf2 (P<.001) and its target genes NQO1 (P<.001) and HO1 (P<.01). Protein expression for Nrf2 was also increased in old SFN fed animals (P<.01), but not the protein expression of NQO1 or HO1. Additionally, ROS and MMP9 protein levels were significantly decreased (P<.05) in old SFN fed animals. Histopathological analysis confirmed that there was no difference in epidermal thickness in old, when compared to young, SFN treated animals, while the dermal layer thickness was lower in old vs. young, treated animals (P<.05). Moreover, collagen deposition was improved with SFN treatment in young (P<.05) and structurally significantly improved in the old mice (P<.001). SFN dietary supplementation therefore ameliorates skin aging through activation of the Nrf2-pathway.


Assuntos
Isotiocianatos/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Envelhecimento da Pele/efeitos dos fármacos , Sulfóxidos/farmacologia , Animais , Antioxidantes/farmacologia , Suplementos Nutricionais , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
11.
iScience ; 24(4): 102379, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33981968

RESUMO

Dicer knockout mouse models demonstrated a key role for microRNAs in pancreatic ß-cell function. Studies to identify specific microRNA(s) associated with human (pro-)endocrine gene expression are needed. We profiled microRNAs and key pancreatic genes in 353 human tissue samples. Machine learning workflows identified microRNAs associated with (pro-)insulin transcripts in a discovery set of islets (n = 30) and insulin-negative tissues (n = 62). This microRNA signature was validated in remaining 261 tissues that include nine islet samples from individuals with type 2 diabetes. Top eight microRNAs (miR-183-5p, -375-3p, 216b-5p, 183-3p, -7-5p, -217-5p, -7-2-3p, and -429-3p) were confirmed to be associated with and predictive of (pro-)insulin transcript levels. Use of doxycycline-inducible microRNA-overexpressing human pancreatic duct cell lines confirmed the regulatory roles of these microRNAs in (pro-)endocrine gene expression. Knockdown of these microRNAs in human islet cells reduced (pro-)insulin transcript abundance. Our data provide specific microRNAs to further study microRNA-mRNA interactions in regulating insulin transcription.

12.
Mol Ther Methods Clin Dev ; 20: 726-739, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33738327

RESUMO

Bovine lactoferricin (LFcinB) has antimicrobial and immunomodulatory properties; however, the effects on diabetic wound healing remain poorly understood. The wound healing potential of LFcinB was investigated with in vitro, ex vivo, and in vivo models. Cell migration and proliferation were tested on keratinocytes and on porcine ears. A type 1 diabetic mouse model was also used to evaluate wound healing kinetics, bacterial diversity patterns, and the effect of LFcinB on oxidative stress, macrophage phenotype, angiogenesis, and collagen deposition. LFcinB increased keratinocyte migration in vitro (p < 0.05) and ex vivo (p < 0.001) and improved wound healing in diabetic mice (p < 0.05), though not in normoglycemic control mice. In diabetic mouse wounds, LFcinB treatment led to the eradication of Bacillus pumilus, a decrease in Staphylococcus aureus, and an increase in the Staphylococcus xylosus prevalence. LFcinB increased angiogenesis in diabetic mice (p < 0.01), but this was decreased in control mice (p < 0.05). LFcinB improved collagen deposition in both diabetic and control mice (p < 0.05). Both oxidative stress and the M1-to-M2 macrophage ratios were decreased in LFcinB-treated wounds of diabetic animals (p < 0.001 and p < 0.05, respectively) compared with saline, suggesting a downregulation of inflammation in diabetic wounds. In conclusion, LFcinB treatment demonstrated noticeable positive effects on diabetic wound healing.

13.
Acta Physiol (Oxf) ; 229(3): e13454, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32056357

RESUMO

AIM: During pregnancy, the maternal ß-cell mass is increased in order to adapt to the physiological changes in insulin demand. Lactogenic hormones stimulate rodent ß-cell attachment and proliferation in vitro. The aim of this study was to identify adhesion molecules involved in expansion of the ß-cell mass during pregnancy in the rat. METHODS: Quantitative RT-PCR was used to evaluate the expression of several integrins and laminins in isolated neonatal rat islets in response to growth hormone (GH) and prolactin (PRL) treatment. Double-immunofluorescence staining of rat pancreas was used to localize the expression of integrin α6ß1. ß-cell proliferation was evaluated by incorporation of bromodeoxyuridine (BrdU). The role of STAT5 phosphorylation was tested by addition of STAT5 mutants. RESULTS: We found that the mRNA level of integrin-α6A, was upregulated 2.5-fold by PRL or GH. During pregnancy, a biphasic 3.4-4.5-fold increase of integrin-α6A and B mRNA levels was detected. A disintegrin peptide (DP) reduced the hormone-stimulated mitotic activity in neonatal rat ß-cells from 2.9 ± 0.4-fold to 1.3 ± 0.3-fold. The hormone-induced expression of α6ß1 integrin was shown to be mediated via STAT5 as a dominant negative (DN) mutant prevented and a constitutive active (CA) mutant augmented the hGH-stimulated expression. The DP was found to inhibit hGH-induced transactivation of the PRL receptor promoter 1A and reduce the hGH-induced phosphorylation of STAT5. CONCLUSION: These results show that integrin-α6 in ß-cells is upregulated by lactogenic hormones and is required but not sufficient for the expansion of the ß-cell mass in pregnancy in the rat, which may have implications for the understanding and treatment of gestational diabetes mellitus.


Assuntos
Hormônio do Crescimento/farmacologia , Células Secretoras de Insulina/fisiologia , Integrina alfa6/fisiologia , Gravidez/fisiologia , Prolactina/fisiologia , Adaptação Fisiológica , Animais , Feminino , Ilhotas Pancreáticas , Ratos
14.
Front Med (Lausanne) ; 6: 242, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737638

RESUMO

Polycystic ovary syndrome (PCOS) remains one of the most common endocrine disorder in premenopausal women with an unfavorable metabolic risk profile. Here, we investigate whether biochemical hyperandrogenism, represented by elevated serum free testosterone, resulted in an aberrant circulating microRNA (miRNAs) expression profile and whether miRNAs can identify those PCOS women with metabolic syndrome (MetS). Accordingly, we measured serum levels of miRNAs as well as biochemical markers related to MetS in a case-control study of 42 PCOS patients and 20 Controls. Patients were diagnosed based on the Rotterdam consensus criteria and stratified based on serum free testosterone levels (≥0.034 nmol/l) into either a normoandrogenic (n = 23) or hyperandrogenic (n = 19) PCOS group. Overall, hyperandrogenic PCOS women were more insulin resistant compared to normoandrogenic PCOS women and had a higher prevalence of MetS. A total of 750 different miRNAs were analyzed using TaqMan Low-Density Arrays. Altered levels of seven miRNAs (miR-485-3p, -1290, -21-3p, -139-3p, -361-5p, -572, and -143-3p) were observed in PCOS patients when compared with healthy Controls. Stratification of PCOS women revealed that 20 miRNAs were differentially expressed between the three groups. Elevated serum free testosterone levels, adjusted for age and BMI, were significantly associated with five miRNAs (miR-1290, -20a-5p, -139-3p, -433-3p, and -361-5p). Using binary logistic regression and receiver operating characteristic curves (ROC), a combination panel of three miRNAs (miR-361-5p, -1225-3p, and -34-3p) could correctly identify all of the MetS cases within the PCOS group. This study is the first to report comprehensive miRNA profiling in different subgroups of PCOS women with respect to MetS and suggests that circulating miRNAs might be useful as diagnostic biomarkers of MetS for a different subset of PCOS.

15.
BMC Res Notes ; 12(1): 682, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31640766

RESUMO

OBJECTIVE: Enzymatic fingerprinting of key enzymes of glucose metabolism is a valuable analysis tool in cell physiological phenotyping of plant samples. Yet, a similar approach for mammalian cell line samples is missing. In this study, we applied semi-high throughput enzyme activity assays that were originally designed for plant samples and tested their feasibility in extracts of six frequently used mammalian cell lines (Caco2, HaCaT, C2C12, HEK293, HepG2 and INS-1E). RESULTS: Enzyme activities for aldolase, hexokinase, glucose-6-phosphate dehydrogenase, phosphoglucoisomerase, phosphoglucomutase, phosphofructokinase could be detected in samples of one or more mammalian cell lines. We characterized effects of sample dilution, assay temperature and repeated freeze-thaw cycles causing potential biases. After careful selection of experimental parameters, the presented semi-high throughput methods could be established as useful tool for physiological phenotyping of cultured mammalian cells.


Assuntos
Metabolismo dos Carboidratos , Ensaios Enzimáticos/métodos , Glucose/metabolismo , Glicólise , Animais , Células CACO-2 , Linhagem Celular , Linhagem Celular Tumoral , Estudos de Viabilidade , Frutose-Bifosfato Aldolase/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Células HEK293 , Células Hep G2 , Hexoquinase/metabolismo , Humanos , Camundongos , Fenótipo , Fosfofrutoquinases/metabolismo , Fosfoglucomutase/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Projetos Piloto
16.
JCI Insight ; 52019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31361602

RESUMO

Human islet isolation is a cost-/resource-intensive program generating islets for cell therapy in Type 1 diabetes. However, only a third of cadaveric pancreas get to clinical transplantation due to low quality/number of islets. There is a need to identify biomarker(s) that predict the quality of islets, prior to initiating their isolation. Here, we sequenced transcriptome from 18 human islet preparations stratified into three groups (Gr.1: Best quality/transplantable islets, Gr.2: Intermediary quality, Gr.3: Inferior quality/non-transplantable islets) based on routine measurements including islet purity/viability. Machine-learning algorithms involving penalized regression analyses identified 10 long-non-coding(lnc)RNAs significantly different across all group-wise comparisons (Gr1VsGr2, Gr2vsGr3, Gr1vsGr3). Two variants of Metastasis-Associated Lung Adenocarcinoma Transcript-1(MALAT1) lncRNA were common across all comparisons. We confirmed RNA-seq findings in a "validation set" of 75 human islet preparations. Finally, in 19 pancreas samples, we demonstrate that assessing the levels of MALAT1 variants alone (ROC curve AUC: 0.83) offers highest specificity in predicting post-isolation islet quality and improves the predictive potential for clinical islet transplantation when combined with Edmonton Donor Points/Body Mass Index(BMI)/North American Islet Donor Score(NAIDS). We present this resource of islet-quality-stratified lncRNA transcriptome data and identify MALAT1 as a biomarker that significantly enhances current selection methods for clinical (GMP)-grade islet isolation.


Assuntos
Transplante das Ilhotas Pancreáticas/métodos , Ilhotas Pancreáticas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Biomarcadores , Índice de Massa Corporal , Modelos Animais de Doenças , Humanos , Camundongos Nus , Pâncreas/patologia , Transplante de Pâncreas , Doadores de Tecidos , Transcriptoma , Transplante Heterólogo
17.
Methods Mol Biol ; 2029: 25-35, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31273731

RESUMO

Pancreatic ß-cells in the islets of Langerhans secrete insulin in response to the rise in glucose levels following food intake. The hypoglycemic action of insulin applies a strong evolutionary brake on ß-cell division. However, under some conditions ß-cells can be stimulated to enter cell cycle progression and divide, for example following exposure to increased glucose levels or during pregnancy. Here, a protocol is described for the isolation of rat adult islets of Langerhans, followed by culture of intact islets in Matrigel and measurement of ß-cell replication by the incorporation of ethynyldeoxyuridine (EdU). EdU positive cells are revealed by a click reaction, nuclei are visualized using a DNA-binding fluorophore (Hoechst 33342), and ß-cells are identified using immunofluorescence detection.


Assuntos
Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/citologia , Animais , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Células Cultivadas , Colágeno/farmacologia , Combinação de Medicamentos , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Feminino , Glucose/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Laminina/farmacologia , Gravidez , Proteoglicanas/farmacologia , Ratos , Ratos Wistar
19.
Noncoding RNA ; 4(4)2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30551650

RESUMO

In this review, we provide an overview of the current knowledge on the role of different classes of non-coding RNAs for islet and ß-cell development, maturation and function. MicroRNAs (miRNAs), a prominent class of small RNAs, have been investigated for more than two decades and patterns of the roles of different miRNAs in pancreatic fetal development, islet and ß-cell maturation and function are now emerging. Specific miRNAs are dynamically regulated throughout the period of pancreas development, during islet and ß-cell differentiation as well as in the perinatal period, where a burst of ß-cell replication takes place. The role of long non-coding RNAs (lncRNA) in islet and ß-cells is less investigated than for miRNAs, but knowledge is increasing rapidly. The advent of ultra-deep RNA sequencing has enabled the identification of highly islet- or ß-cell-selective lncRNA transcripts expressed at low levels. Their roles in islet cells are currently only characterized for a few of these lncRNAs, and these are often associated with ß-cell super-enhancers and regulate neighboring gene activity. Moreover, ncRNAs present in imprinted regions are involved in pancreas development and ß-cell function. Altogether, these observations support significant and important actions of ncRNAs in ß-cell development and function.

20.
Am J Physiol Endocrinol Metab ; 315(4): E634-E637, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29989852

RESUMO

Inappropriate insulin secretion from ß-cells is considered as an early sign of impaired glucose tolerance and type 2 diabetes (T2D). Glucokinase (GCK) is an important enzyme that regulates glucose metabolism and ensures that the normal circulating glucose concentrations are maintained. GCK expression is induced by glucose and regulated via transcription factors and regulatory proteins. Recently, microRNA-206 (miR-206) was reported to regulate GCK and alter glucose tolerance in normal and high-fat diet-fed mice. Although the study findings have implications for human diabetes, studies in human islets are lacking. Here, we analyze human islets from individuals without or with T2D, using TaqMan-based real-time qPCR at the tissue (isolated islet) level as well as at single cell resolution, to assess the relationship between miR-206 and GCK expression in normal and T2D human islets. Our data suggest that, unlike mouse islets, human islets do not exhibit any correlation between miR-206 and GCK transcripts. These data implicate the need for further studies aimed toward exploring its potential role(s) in human islets.


Assuntos
Diabetes Mellitus Tipo 2/genética , Glucoquinase/genética , Ilhotas Pancreáticas/metabolismo , MicroRNAs/metabolismo , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/metabolismo , Regulação da Expressão Gênica , Humanos , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...