Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Inst Mech Eng H ; 222(7): 1107-14, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19024158

RESUMO

This paper develops an indirect selective laser sintering (SLS) processing route for apatite-wollastonite (A-W) glass-ceramic, and shows that the processing route, which can create porous three-dimensional products suitable for bone implants or scaffolds, does not affect the excellent mechanical and biological properties of the glass-ceramic. 'Green parts' with fine integrity and well-defined shape have been produced from glass particles of single-size range or mixed-size ranges with acrylic binder in various ratios by weight. A subsequent heat treatment process has been developed to optimize the crystallization process, and an infiltration process has been explored to enhance mechanical strength. Three-point bending test results show flexural strengths of up to 102 MPa, dependent on porosity, and simulated body fluid (SBF) tests show that the laser sintered porous A-W has comparable biological properties to that of conventionally produced A-W.


Assuntos
Apatitas/química , Substitutos Ósseos/química , Substitutos Ósseos/efeitos da radiação , Compostos de Cálcio/química , Cerâmica/química , Vidro/química , Calefação/métodos , Lasers , Silicatos/química , Apatitas/efeitos da radiação , Compostos de Cálcio/efeitos da radiação , Cerâmica/efeitos da radiação , Vidro/efeitos da radiação , Teste de Materiais , Silicatos/efeitos da radiação
2.
Proc Inst Mech Eng H ; 220(1): 57-68, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16459446

RESUMO

The feasibility of using indirect selective laser sintering (SLS) to produce parts from glass-ceramic materials for bone replacement applications has been investigated. A castable glass based on the system SiO2 x Al2O3 x P2O5 x CaO x CaF2 that crystallizes to a glass-ceramic with apatite and mullite phases was produced, blended with an acrylic binder, and processed by SLS. Green parts with good structural integrity were produced using a wide range of processing conditions, allowing both monolayer and multilayer components to be constructed. Following SLS the parts were post-processed to remove the binder and to crystallize fully the material, evolving the apatite and mullite phases. The parts were heated to 1200 degrees C using a number of different time-temperature profiles, following which the processed material was analysed by differential thermal analysis, X-ray diffraction, and scanning electron microscopy, and tested for flexural strength. An increase in strength was achieved by infiltrating the brown parts with a resorbable phosphate glass, although this altered the crystal phases present in the material.


Assuntos
Silicatos de Alumínio/química , Apatitas/química , Substitutos Ósseos/química , Cerâmica/química , Vidro/química , Substitutos Ósseos/análise , Elasticidade , Temperatura Alta , Lasers , Teste de Materiais , Tamanho da Partícula , Propriedades de Superfície , Resistência à Tração
3.
J Mater Sci Mater Med ; 16(8): 775-81, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15965749

RESUMO

The work presented details the results of an investigation into the feasibility of using Selective Laser Sintering (SLS) to directly produce customised bioceramic implants. The materials used were bioactive in nature and included a glass-ceramic and a combination of hydroxyapatite and phosphate glass. The glass-ceramic was selected from the range of apatite-mullite materials in the SiO2.Al2O3.CaO.CaF2.P2O5 series, due to their potentially suitable biological and mechanical properties. The hydroxyapatite and phosphate glass combination was chosen to allow an alternative production approach to be investigated. The viability of using both these materials with the SLS process was assessed and the process route and resulting material properties characterised using a variety of techniques including Differential Thermal Analysis (DTA), X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The results obtained indicate that it was possible to produce multiple layer components from both materials using the SLS process. The glass-ceramic materials could only be processed at very low scan speeds and powers, yielding relatively brittle components. It was though possible to produce parts from the hydroxyapatite and phosphate glass combination across a much wider range of parameters, producing parts which had a greater potential for possible implant production.


Assuntos
Silicatos de Alumínio/química , Apatitas/química , Substitutos Ósseos/química , Durapatita/química , Vidro/química , Lasers , Fosfatos/química , Silicatos de Alumínio/análise , Silicatos de Alumínio/efeitos da radiação , Apatitas/análise , Apatitas/efeitos da radiação , Materiais Biocompatíveis/análise , Materiais Biocompatíveis/química , Materiais Biocompatíveis/efeitos da radiação , Substitutos Ósseos/análise , Substitutos Ósseos/efeitos da radiação , Durapatita/análise , Durapatita/efeitos da radiação , Estudos de Viabilidade , Vidro/análise , Vidro/efeitos da radiação , Temperatura Alta , Teste de Materiais , Tamanho da Partícula , Fosfatos/análise , Fosfatos/efeitos da radiação , Propriedades de Superfície
4.
Proc Inst Mech Eng H ; 216(3): 211-4, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12137288

RESUMO

The aim of this study was to manufacture life-size, flexible, tubular replicas of human abdominal aortic aneurysms and the associated vasculature, suitable for use in a training simulator for endovascular procedures. Selective laser sintering was used to create a geometrically correct master model for each of ten anatomical variations. The masters were used to generate flexible latex replicas. The use of the replicas in the training simulator was demonstrated. In total ten silicone rubber models were produced. When connected into the training simulator and perfused at arterial pressure it was possible to deploy an endovascular stent under fluoroscopic control and to perform angiography. The study has shown that conventional rapid prototyping technology can be used to manufacture flexible, radiolucent replicas which provide a realistic training environment for endovascular procedures.


Assuntos
Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/cirurgia , Modelos Anatômicos , Angiografia Digital , Angioplastia , Aorta Abdominal/patologia , Aorta Abdominal/fisiopatologia , Aneurisma da Aorta Abdominal/fisiopatologia , Prótese Vascular , Desenho de Equipamento , Cirurgia Geral/educação , Humanos , Poliuretanos , Intensificação de Imagem Radiográfica , Radiologia/educação , Elastômeros de Silicone , Stents , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...