Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(20): 13990-13999, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34590483

RESUMO

The aim of this study is to compare the azole synergy across an insect, Chironomus riparius, and a crustacean species, Daphnia magna. We use a combination of in vivo measurements of cytochrome P450 monooxygenase (CYP) biotransformation potential and toxicokinetic (TK) and toxicodynamic (TD) modeling to understand the mechanism behind the synergy of two azole fungicides: the imidazole prochloraz and the triazole propiconazole on the pyrethroid insecticide α-cypermethrin. For both species, the synergistic effect of prochloraz was well-described by its effect on in vivo CYP activity, which corresponded to the biotransformation rate of the TK model parameterized on the survival data of the mixture experiment. For propiconazole, however, there were 100-fold and 50-fold differences between the 50% effect concentration of in vivo CYP activity and the modeled biotransformation rate for C. riparius and D. magna, respectively. Propiconazole, therefore, seems to induce synergy through a mechanism that cannot be quantified solely by the CYP activity assay used in this study in either of the two species. We discuss the differences between prochloraz and propiconazole as synergists across the two species in the light of the type and time dynamics of affected biotransformation processes.


Assuntos
Chironomidae , Fungicidas Industriais , Poluentes Químicos da Água , Animais , Azóis , Daphnia
3.
Sci Rep ; 11(1): 1458, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446766

RESUMO

T cell activation is intimately linked to metabolism, as distinct metabolic requirements support the functional and phenotypical differences between quiescent and activated T cells. Metabolic transition from mitochondrial oxidative phosphorylation to aerobic glycolysis is crucial for a proper T cell activation. However, the role of tricarboxylic acid cycle (TCA), and in particular succinate dehydrogenase (SDH) in activated T cells needs further elucidation. Here we show that inhibition of SDH during activation of T cells results in strong impairment of proliferation, expression of activation markers, and production of key inflammatory cytokines, despite a concomitant increase in glycolytic metabolic activity. Similar effect of SDH inhibition were demonstrated in pre-activated T cell. Interestingly, itaconic acid, an endogenous SDH inhibitor released from activated macrophages and dendritic cells, had no immunomodulator effect. Taken together, our findings demonstrate that SDH enzyme fitness is critical for mounting and maintaining appropriate activation and function of human T cells.


Assuntos
Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Succinato Desidrogenase/antagonistas & inibidores , Linfócitos T/imunologia , Citocinas/biossíntese , Citocinas/imunologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/imunologia , Regulação da Expressão Gênica/imunologia , Humanos , Succinato Desidrogenase/imunologia
4.
Environ Sci Technol ; 54(9): 5687-5699, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32227918

RESUMO

Pyrethroid insecticides are known to be highly toxic to most aquatic nontarget organisms, but little is known about the mechanisms causing some species to be highly sensitive while others are hardly affected by the pyrethroids. The aim of the present study was to measure the sensitivity (EC50-values) of 10 aquatic invertebrates toward a 24 h pulse of the pyrethroid cypermethrin and subsequently test if the difference in sensitivity could be explained by measured morphological and physiological traits and modeled toxicokinetic (TK) and toxicodynamic (TD) parameters. Large differences were observed for the measured uptake and elimination kinetics, with bioconcentration factors (BCFs) ranging from 53 to 2337 at the end of the exposure. Similarly, large differences were observed for the TDs, and EC50-values after 168 h varied 120-fold. Modeling the whole organism cypermethrin concentrations indicated compartmentation into a sorbed fraction and two internal fractions: a bioavailable and non-bioavailable internal fraction. Strong correlations between surface/volume area and the TK parameters (sorption and uptake rate constants and the resulting BCF) were found, but none of the TK parameters correlated with sensitivity. The only parameter consistently correlating with sensitivity across all species was the killing rate constant of the GUTS-RED-SD model (the reduced general unified threshold models of survival assuming stochastic death), indicating that sensitivity toward cypermethrin is more related to the TD parameters than to TK parameters.


Assuntos
Piretrinas , Poluentes Químicos da Água , Animais , Organismos Aquáticos , Invertebrados , Cinética , Toxicocinética
5.
Chemosphere ; 225: 166-173, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30875499

RESUMO

The fungicide imazalil is a chiral compound with one R- and one S-enantiomer. Enantiomers, while having the same chemical properties, can differ in their biological activity expressed as efficacy/toxicity as well as in their degradation kinetics and pathways. Azoles such as imazalil have been shown to synergize the effect of pyrethroid insecticides like α-cypermethrin through inhibition of cytochrome P450 monooxygenase responsible for pyrethroid detoxification. The aim of this study was to investigate, if the enantiomers of imazalil are selective in their synergistic potential in a mixture with a pyrethroid insecticide tested in Chironomus riparius. Potential enantioselectivity was studied on the level of uptake and elimination, inhibition of cytochrome P450 activity measured in vitro and in vivo and on synergistic potential of α-cypermethrin induced immobilization. Synergy was measured as an increase in α-cypermethrin toxicity after 144h applying a constant non-lethal imazalil concentration of 0.65 µmol/L. The R- and S-imazalil enantiomers increased α-cypermethrin toxicity from an EC50 of 1580 ±â€¯980 pmol/L to an EC50 of 83 ±â€¯10 pmol/L and 53 ±â€¯8 pmol/L, respectively. The relatively small potency difference between imazalil enantiomers could not be explained by the in vitro cytochrome P450 inhibition, as the IC50 values were similar (0.11 ±â€¯0.01 and 0.09 ±â€¯0.01 µmol/L for R- and S-imazalil). Measuring in vivo P450 inhibition and the toxicokinetic of imazalil did not show a clear trend of selectivity towards one or the other enantiomer. The study therefore suggests that cytochrome P450 enzymes involved in detoxification in C. riparius are not enantioselective for imazalil.


Assuntos
Chironomidae/efeitos dos fármacos , Chironomidae/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Imidazóis/química , Imidazóis/toxicidade , Piretrinas/química , Piretrinas/toxicidade , Animais , Inibidores das Enzimas do Citocromo P-450/química , Inibidores das Enzimas do Citocromo P-450/metabolismo , Inibidores das Enzimas do Citocromo P-450/toxicidade , Interações Medicamentosas , Fungicidas Industriais/química , Fungicidas Industriais/metabolismo , Fungicidas Industriais/toxicidade , Imidazóis/metabolismo , Inativação Metabólica/efeitos dos fármacos , Inseticidas/química , Inseticidas/metabolismo , Inseticidas/toxicidade , Piretrinas/metabolismo , Estereoisomerismo , Toxicocinética
6.
Chemosphere ; 200: 632-640, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29510371

RESUMO

The aquatic toxicity of insecticides like the pyrethroids have been discussed intensively over the recent years especially in relation to risk assessment and how seasonality may or may not affect the sensitivity of non-target organisms. To address this issue, the crustacean Gammarus pulex was collected once a month for 16 months and acclimated to 10 °C for four days before being exposed to a 90 min pulse of cypermethrin. In vitro cytochrome P450 activity, total lipid content, total protein content, and dry weight were measured in male and female gammarids from each sampling date and used along with the water temperature as variables for sensitivity prediction by Partial Least Squares (PLS) regression models. The 24 h EC50-values varied more than 30 fold across the sampling period from 0.21 ±â€¯0.05 µg L-1 (April 2015) to 6.60 ±â€¯3.46 µg L-1 (October 2015), indicating seasonal variances in the acute sensitivity of G. pulex towards cypermethrin. After 168 h of recovery this difference in EC50-values was reduced to seven-fold. In both male and female gammarids seasonal patterns were observed in the total lipid content and in vitro CYP P450 activity, which peaked in spring and fall, respectively. The current study shows the importance of reporting time of organism collection and experimental execution for risk assessment of pyrethroids as season is important for the acute sensitivity of G. pulex. We suggest prolonged acclimation times of sampled macroinvertebrates to constant laboratory conditions in order to even out possible seasonal differences in sensitivity.


Assuntos
Anfípodes/efeitos dos fármacos , Inseticidas/farmacologia , Piretrinas/farmacologia , Poluentes Químicos da Água/farmacologia , Anfípodes/enzimologia , Anfípodes/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Inseticidas/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Piretrinas/metabolismo , Estações do Ano , Poluentes Químicos da Água/metabolismo
7.
Environ Sci Technol ; 51(24): 14379-14389, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-28901128

RESUMO

Some chemicals are known to enhance the effect of other chemicals beyond what can be predicted with standard mixture models, such as concentration addition and independent action. These chemicals are called synergists. Up until now, no models exist that can predict the joint effect of mixtures including synergists. The aim of the present study is to develop a mechanistic toxicokinetic (TK) and toxicodynamic (TD) model for the synergistic mixture of the azole fungicide, propiconazole (the synergist), and the insecticide, α-cypermethrin, on the mortality of the crustacean Daphnia magna. The study tests the hypothesis that the mechanism of synergy is the azole decreasing the biotransformation rate of α-cypermethrin and validates the predictive ability of the model on another azole with a different potency: prochloraz. The study showed that the synergistic potential of azoles could be explained by their effect on the biotransformation rate but that this effect could only partly be explained by the effect of the two azoles on cytochrome P450 activity, measured on D. magna in vivo. TKTD models of interacting mixtures seem to be a promising tool to test mechanisms of interactions between chemicals. Their predictive ability is, however, still uncertain.


Assuntos
Daphnia , Fungicidas Industriais , Toxicocinética , Animais , Azóis , Inseticidas
8.
Environ Toxicol Chem ; 36(8): 2155-2166, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28145595

RESUMO

Two of the main classes of pesticides commonly used in agriculture are azole fungicides and pyrethroid insecticides. Because azoles have been shown to synergize the effect of pyrethroids, the effect of their mixture is of concern. The aim of the present study was to investigate the effect of sublethal concentrations of epoxiconazole and α-cypermethrin and their mixture on growth, reproduction, and in vivo cytochrome P450 activity of the aquatic crustacean Daphnia magna over 42 d. Continuous exposure to nonlethal concentrations of α-cypermethrin at 20 ng/L negatively affected adult growth and number and size of neonates within the first 14 d of exposure. Exposure to epoxiconazole at 25 µg/L increased protein content of adults within 1 to 3 d after initiating exposure and increased cumulative number of offspring at exposure times >31 d. Epoxiconazole enhanced the negative effect of α-cypermethrin up to 3-fold leading to decreased growth, cytochrome P450 activity, and reproduction of D. magna within the first 14 d of exposure. After 14 d, the synergistic interactions disappeared. The reported effects, although lacking direct negative consequence in the long term, might have cumulative toxicity with other stressors such as food scarcity, predation, and pathogens, posing an additional hazard for the organisms at the beginning of their life cycle. Environ Toxicol Chem 2017;36:2155-2166. © 2017 SETAC.


Assuntos
Daphnia/efeitos dos fármacos , Daphnia/crescimento & desenvolvimento , Compostos de Epóxi/toxicidade , Piretrinas/toxicidade , Triazóis/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Daphnia/enzimologia , Daphnia/fisiologia , Sinergismo Farmacológico , Monitoramento Ambiental/métodos , Fungicidas Industriais/toxicidade , Praguicidas/toxicidade , Reprodução/efeitos dos fármacos , Fatores de Tempo
9.
Aquat Toxicol ; 182: 79-90, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27875797

RESUMO

Though only occurring rarely, synergistic interactions between chemicals in mixtures have long been a point of focus. Most studies analyzing synergistic interactions used unrealistically high chemical concentrations. The aim of the present study is to determine the threshold concentration below which proven synergists cease to act as synergists towards the aquatic crustacean Daphnia magna. To do this, we compared several approaches and test-setups to evaluate which approach gives the most conservative estimate for the lower threshold for synergy for three known azole synergists. We focus on synergistic interactions between the pyrethroid insecticide, alpha-cypermethrin, and one of the three azole fungicides prochloraz, propiconazole or epoxiconazole measured on Daphnia magna immobilization. Three different experimental setups were applied: A standard 48h acute toxicity test, an adapted 48h test using passive dosing for constant chemical exposure concentrations, and a 14-day test. Synergy was defined as occuring in mixtures where either EC50 values decreased more than two-fold below what was predicted by concentration addition (horizontal assessment) or as mixtures where the fraction of immobile organisms increased more than two-fold above what was predicted by independent action (vertical assessment). All three tests confirmed the hypothesis of the existence of a lower azole threshold concentration below which no synergistic interaction was observed. The lower threshold concentration, however, decreased with increasing test duration from 0.026±0.013µM (9.794±4.897µgL-1), 0.425±0.089µM (145.435±30.46µgL-1) and 0.757±0.253µM (249.659±83.44µgL-1) for prochloraz, propiconazole and epoxiconazole in standard 48h toxicity tests to 0.015±0.004µM (5.651±1.507µgL-1), 0.145±0.025µM (49.619±8.555µgL-1) and 0.122±0.0417µM (40.236±13.75µgL-1), respectively, in the 14-days tests. Testing synergy in relation to concentration addition provided the most conservative values. The threshold values for the vertical assessments in tests where the two could be compared were in general 1.2 to 4.7 fold higher than the horizontal assessments. Using passive dosing rather than dilution series or spiking did not lower the threshold significantly. Below the threshold for synergy, slight antagony could often be observed. This is most likely due to induction of enzymes active in metabolization of alpha-cypermethrin. The results emphasize the importance of test duration when assessing synergy, but also show that azole concentrations within the typically monitored range of up to 0.5µgL-1 are not likely to cause severe synergy concerning Daphnia magna immobilization.


Assuntos
Daphnia/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Piretrinas/toxicidade , Animais , Sinergismo Farmacológico , Compostos de Epóxi/toxicidade , Imidazóis/toxicidade , Testes de Toxicidade/normas , Triazóis/toxicidade , Poluentes Químicos da Água/toxicidade
10.
Aquat Toxicol ; 172: 95-102, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26784738

RESUMO

Azole fungicides (imidazoles and triazoles) are known to function synergistically with several compounds, especially with pyrethroid insecticides, most likely by inhibiting cytochrome P450. Different azole fungicides have been shown to differ in their synergistic potentials usually with the imidazoles being stronger synergists than the triazoles. This study investigated whether the toxicokinetic and toxicodynamic (TKTD) properties of the imidazole prochloraz and triazole propiconazole can explain their different synergistic potential toward the freshwater macroinvertebrate Daphnia magna. Pulse exposure to external concentrations of propiconazole (1.4µM) and prochloraz (1.7µM) for 18h resulted in internal concentrations of 22.7 and 53.5µmolkg(-1)w.w. for propiconazole and prochloraz, respectively. This 2-fold difference in bioaccumulation corresponded very well with the observed 2.7-fold lower external EC50-estimate (7 days) for prochloraz compared to propiconazole. The estimated IC50 for the in vivo inhibition of cytochrome P450 (ECOD) activity, however, measured as transformation of 7-ethoxycoumarin into 7-hydroxycoumarin, was almost 500-fold higher for prochloraz (IC50: 0.011±0.002µM) compared to propiconazole (IC50: 4.9±0.06µM). When indirectly measuring the binding strength of the two azoles, daphnids exposed to propiconazole recovered roughly 80% of their ECOD activity compared to the control shortly after being moved to azole-free medium, indicating that propiconazole causes reversible inhibition of cytochrome P450. In contrast, the ECOD-activity remained inhibited in the prochloraz-exposed daphnids for 12h following transfer to azole-free medium, which correlated with elimination of the measured internal prochloraz concentration (DT95≈13h). These results indicate that lethal toxicity of the azole fungicides is mainly driven by toxicokinetics through their hydrophobicities resulting in different internal concentrations. Their synergistic potential toward pyrethroid toxicity, on the other hand, is mainly governed by their toxicodynamic effects measured as the differences in IC50-values toward in vivo cytochrome P450 (ECOD) activity together with the proposed binding strength measured indirectly through the recovery of ECOD activity as a function of internal azole concentrations.


Assuntos
Daphnia/efeitos dos fármacos , Imidazóis/toxicidade , Piretrinas/toxicidade , Triazóis/toxicidade , Animais , Cumarínicos/metabolismo , Sinergismo Farmacológico , Fungicidas Industriais/toxicidade , Concentração Inibidora 50 , Umbeliferonas/química , Poluentes Químicos da Água/toxicidade
11.
Aquat Toxicol ; 162: 94-101, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25797530

RESUMO

Pyrethroid insecticides are highly toxic to non-target aquatic invertebrates. Their high toxicity is synergized when co-occurring with azole fungicides in the aquatic environment. Little is known about the importance of synergy, when pyrethroids only occur during a short pulse of a few hours, as it is likely to happen in the environment, nor about the persistence of synergy over time. This study analyzed the synergistic potential of the fungicides propiconazole and prochloraz toward Daphnia magna, when exposed to a pulse (7.2 h) of α-cypermethrin at different concentrations (average pulse concentrations 0.07-11 nM). Immobilization was monitored during exposure and a subsequent recovery period (87.5h) with and without continuous co-exposure to the azoles (1.4 and 1.7 µM, respectively). EC50 values for immobilization decreased exponentially over time with a higher rate in the presence of the azoles. EC50 values for α-cypermethrin determined at the end of the experiment were 3.3±0.5 nM in the absence of azoles and 0.26±0.04, and 0.08±0.01 nM in the presence of propiconazole and prochloraz, respectively. The synergistic potential of the azoles was strongly dependent on time: no synergism could be detected during the pulse, but with azole co-exposure EC50 values decreased during the recovery period by a factor of up to 13 (propiconazole) and 61 (prochloraz) compared to values without azole exposure. Such high synergistic ratios have not been reported for pesticide mixtures in literature before. Our findings highlight that a pulse of the pyrethroid α-cypermethrin is synergized far beyond the actual pulse and beyond standardized test durations. Long post-exposure times are therefore mandatory in order to capture full synergism.


Assuntos
Daphnia/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Imidazóis/toxicidade , Inseticidas/toxicidade , Piretrinas/toxicidade , Triazóis/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Fatores de Tempo , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...