Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(22): 226003, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37327429

RESUMO

At zero temperature, a Galilean-invariant Bose fluid is expected to be fully superfluid. Here we investigate theoretically and experimentally the quenching of the superfluid density of a dilute Bose-Einstein condensate due to the breaking of translational (and thus Galilean) invariance by an external 1D periodic potential. Both Leggett's bound fixed by the knowledge of the total density and the anisotropy of the sound velocity provide a consistent determination of the superfluid fraction. The use of a large-period lattice emphasizes the important role of two-body interactions on superfluidity.


Assuntos
Anisotropia , Temperatura
2.
Phys Rev Lett ; 127(2): 023603, 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34296923

RESUMO

Most experimental observations of solitons are limited to one-dimensional (1D) situations, where they are naturally stable. For instance, in 1D cold Bose gases, they exist for any attractive interaction strength g and particle number N. By contrast, in two dimensions, solitons appear only for discrete values of gN, the so-called Townes soliton being the most celebrated example. Here, we use a two-component Bose gas to prepare deterministically such a soliton: Starting from a uniform bath of atoms in a given internal state, we imprint the soliton wave function using an optical transfer to another state. We explore various interaction strengths, atom numbers, and sizes and confirm the existence of a solitonic behavior for a specific value of gN and arbitrary sizes, a hallmark of scale invariance.

3.
Nat Commun ; 12(1): 760, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536418

RESUMO

Tan's contact is a quantity that unifies many different properties of a low-temperature gas with short-range interactions, from its momentum distribution to its spatial two-body correlation function. Here, we use a Ramsey interferometric method to realize experimentally the thermodynamic definition of the two-body contact, i.e., the change of the internal energy in a small modification of the scattering length. Our measurements are performed on a uniform two-dimensional Bose gas of 87Rb atoms across the Berezinskii-Kosterlitz-Thouless superfluid transition. They connect well to the theoretical predictions in the limiting cases of a strongly degenerate fluid and of a normal gas. They also provide the variation of this key quantity in the critical region, where further theoretical efforts are needed to account for our findings.

4.
Phys Rev Lett ; 125(23): 233604, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33337228

RESUMO

In atomic systems, clock states feature a zero projection of the total angular momentum and thus a low sensitivity to magnetic fields. This makes them widely used for metrological applications like atomic fountains or gravimeters. Here, we show that a mixture of two such nonmagnetic states still displays magnetic dipole-dipole interactions comparable to the one expected for the other Zeeman states of the same atomic species. Using high-resolution spectroscopy of a planar gas of ^{87}Rb atoms with a controlled in plane shape, we explore the effective isotropic and extensive character of these interactions and demonstrate their tunability. Our measurements set strong constraints on the relative values of the s-wave scattering lengths a_{ij} involving the two clock states.

5.
Nat Commun ; 10(1): 1422, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926769

RESUMO

Many-body systems at low temperatures generally organize themselves into ordered phases, whose nature and symmetries are captured by an order parameter. This order parameter is spatially uniform in the simplest cases, for example the macroscopic magnetization of a ferromagnetic material. Non-uniform situations also exist in nature, for instance in antiferromagnetic materials, where the magnetization alternates in space, or in the so-called stripe phases emerging for itinerant electrons in strongly correlated materials. Understanding such inhomogeneously ordered states is of central importance in many-body physics. Here we study experimentally the magnetic ordering of itinerant spin-1 bosons in inhomegeneous spin domains at nano-Kelvin temperatures. We demonstrate that spin domains form spontaneously, that is purely because of the antiferromagnetic interactions between the atoms and in the absence of external magnetic forces, after a phase separation transition. Furthermore, we explore how the equilibrium domain configuration emerges from an initial state prepared far from equilibrium.

6.
Rev Mod Phys ; 91(1)2019.
Artigo em Inglês | MEDLINE | ID: mdl-32189812

RESUMO

There have been significant recent advances in realizing band structures with geometrical and topological features in experiments on cold atomic gases. This review summarizes these developments, beginning with a summary of the key concepts of geometry and topology for Bloch bands. Descriptions are given of the different methods that have been used to generate these novel band structures for cold atoms and of the physical observables that have allowed their characterization. The focus is on the physical principles that underlie the different experimental approaches, providing a conceptual framework within which to view these developments. Also described is how specific experimental implementations can influence physical properties. Moving beyond single-particle effects, descriptions are given of the forms of interparticle interactions that emerge when atoms are subjected to these energy bands and of some of the many-body phases that may be sought in future experiments.

7.
Phys Rev Lett ; 121(14): 145301, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30339451

RESUMO

In superfluid systems several sound modes can be excited, such as, for example, first and second sound in liquid helium. Here, we excite running and standing waves in a uniform two-dimensional Bose gas and we characterize the propagation of sound in both the superfluid and normal regimes. In the superfluid phase, the measured speed of sound is in good agreement with the prediction of a two-fluid hydrodynamic model, and the weak damping is well explained by the scattering with thermal excitations. In the normal phase we observe a stronger damping, which we attribute to a departure from hydrodynamic behavior.

8.
Phys Rev Lett ; 119(19): 190403, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29219502

RESUMO

Controlled quantum systems such as ultracold atoms can provide powerful platforms to study nonequilibrium dynamics of closed many-body quantum systems, especially since a complete theoretical description is generally challenging. In this Letter, we present a detailed study of the rich out-of-equilibrium dynamics of an adjustable number N of uncorrelated condensates after connecting them in a ring-shaped optical trap. We observe the formation of long-lived supercurrents and confirm the scaling of their winding number with N in agreement with the geodesic rule. Moreover, we provide insight into the microscopic mechanism that underlies the smoothening of the phase profile.

9.
Phys Rev Lett ; 119(5): 050404, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28949721

RESUMO

We observe multistep condensation of sodium atoms with spin F=1, where the different Zeeman components m_{F}=0,±1 condense sequentially as the temperature decreases. The precise sequence changes drastically depending on the magnetization m_{z} and on the quadratic Zeeman energy q (QZE) in an applied magnetic field. For large QZE, the overall structure of the phase diagram is the same as for an ideal spin-1 gas, although the precise locations of the phase boundaries are significantly shifted by interactions. For small QZE, antiferromagnetic interactions qualitatively change the phase diagram with respect to the ideal case, leading, for instance, to condensation in m_{F}=±1, a phenomenon that cannot occur for an ideal gas with q>0.

10.
Phys Rev Lett ; 113(13): 135302, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25302899

RESUMO

We create supercurrents in annular two-dimensional Bose gases through a temperature quench of the normal-to-superfluid phase transition. We detect the magnitude and the direction of these supercurrents by measuring spiral patterns resulting from the interference of the cloud with a central reference disk. These measurements demonstrate the stochastic nature of the supercurrents. We further measure their distribution for different quench times and compare it with predictions based on the Kibble-Zurek mechanism.

11.
Sci Rep ; 1: 43, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22355562

RESUMO

Considerable efforts are currently devoted to the preparation of ultracold neutral atoms in the strongly correlated quantum Hall regime. However, the necessary angular momentum is very large and in experiments with rotating traps this means spinning frequencies extremely near to the deconfinement limit; consequently, the required control on parameters turns out to be too stringent. Here we propose instead to follow a dynamic path starting from the gas initially confined in a rotating ring. The large moment of inertia of the ring-shaped fluid facilitates the access to large angular momenta, corresponding to giant vortex states. The trapping potential is then adiabatically transformed into a harmonic confinement, which brings the interacting atomic gas in the desired quantum-Hall regime. We provide numerical evidence that for a broad range of initial angular frequencies, the giant-vortex state is adiabatically connected to the bosonic ν = 1/2 Laughlin state.


Assuntos
Campos Magnéticos , Modelos Químicos , Teoria Quântica , Simulação por Computador , Rotação
12.
Phys Rev Lett ; 93(9): 093003, 2004 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-15447096

RESUMO

We describe the realization of a magnetically guided beam of cold rubidium atoms, with a flux of 7 x 10(9) atoms/s, a temperature of 400 microK, and a mean velocity of 1 m/s. The rate of elastic collisions within the beam is sufficient to ensure thermalization. We show that the evaporation induced by a radio-frequency wave leads to appreciable cooling and an increase in the phase space density. We discuss the perspectives to reach the quantum degenerate regime using evaporative cooling.

13.
Phys Rev Lett ; 90(10): 100403, 2003 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-12688984

RESUMO

We study the two transverse quadrupole modes of a cigar-shaped Bose-Einstein condensate with a single centered vortex. We show that the counterrotating mode is more strongly damped than in the absence of a vortex, whereas the corotating mode is not affected appreciably by the vortex. We interpret this result as a decay of the counterrotating quadrupole mode into two excitations of the vortex line, the so-called Kelvin modes. This is supported by direct observation of the vortex line.

14.
Phys Rev Lett ; 89(20): 200403, 2002 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-12443462

RESUMO

We study experimentally the line of a single quantized vortex in a rotating prolate Bose-Einstein condensate confined by a harmonic potential. In agreement with predictions, we find that the vortex line is in most cases curved at the ends. We monitor the vortex line leaving the condensate. Its length is measured as a function of time and temperature. For a low temperature, the survival time can be as large as 10 sec. The length of the line and its deviation from the center of the trap are related to the angular momentum per particle along the condensate axis.

15.
Phys Rev Lett ; 88(25 Pt 1): 250402, 2002 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-12097077

RESUMO

We study experimentally the transverse monopole mode of an elongated rubidium condensate. Because of the scaling invariance of the nonlinear Schrödinger (Gross-Pitaevskii) equation, the oscillation is monochromatic and sinusoidal at short times, even under strong excitation. For ultralow temperatures, the quality factor Q = omega(0)/gamma(0) can exceed 2000, where omega(0) and gamma(0) are the mode angular frequency and damping rate. This value is much larger than any previously reported for other eigenmodes of a condensate. We also present the temperature variation of omega(0) and gamma(0).

16.
Phys Rev Lett ; 88(25 Pt 1): 250403, 2002 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-12097078

RESUMO

We study experimentally and theoretically a cold trapped Bose gas under critical rotation, i.e., with a rotation frequency close to the frequency of the radial confinement. We identify two regimes: the regime of explosion where the cloud expands to infinity in one direction, and the regime where the condensate spirals out of the trap as a rigid body. The former is realized for a dilute cloud, and the latter for a condensate with the interparticle interaction exceeding a critical value. This constitutes a novel system in which repulsive interactions help in maintaining particles together.

17.
Phys Rev Lett ; 86(20): 4443-6, 2001 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-11384255

RESUMO

Using a focused laser beam we stir a 87Rb Bose-Einstein condensate confined in a magnetic trap. We observe that the steady states of the condensate correspond to an elliptic cloud, stationary in the rotating frame. These steady states depend nonlinearly on the stirring parameters (amplitude and frequency), and various solutions can be reached experimentally depending on the path followed in this parameter space. These states can be dynamically unstable and we observe that such instabilities lead to vortex nucleation in the condensate.

18.
Phys Rev Lett ; 84(5): 806-9, 2000 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-11017378

RESUMO

Using a focused laser beam we stir a Bose-Einstein condensate of 87Rb confined in a magnetic trap and observe the formation of a vortex for a stirring frequency exceeding a critical value. At larger rotation frequencies we produce states of the condensate for which up to four vortices are simultaneously present. We have also measured the lifetime of the single vortex state after turning off the stirring laser beam.

19.
Phys Rev Lett ; 85(11): 2223-7, 2000 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-10977977

RESUMO

We study the quadrupole oscillation of a Bose-Einstein condensate of 87Rb atoms confined in an axisymmetric magnetic trap, after it has been stirred by an auxiliary laser beam. The stirring may lead to the nucleation of one or more vortices, whose presence is revealed unambiguously by the precession of the axes of the quadrupolar mode. For a stirring frequency Omega below the single vortex nucleation threshold Omega(c), no measurable precession occurs. Just above Omega(c), the angular momentum deduced from the precession is approximately Planck's over 2pi. For stirring frequencies above Omega(c) the angular momentum is a smooth and increasing function of Omega, until an angular frequency is reached at which the vortex lattice disappears.

20.
Opt Express ; 2(8): 323-9, 1998 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-19381197

RESUMO

Using forced radio-frequency evaporation, we have cooled cesium atoms prepared in the sublevel F = -m(F) = 3 and confined in a magnetic trap. At the end of the evaporation ramp, the sample contains ~ 7000 atoms at 80 nK, corresponding to a phase space density 3 x 10(-2). A molecular dynamics approach, including the effect of gravity, gives a good account for the experimental data, assuming a scattering length larger than 300 Angstrom.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...