Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38183631

RESUMO

Introduction: Diabetes mellitus (DM) affects over 422 million people globally. Patients with DM are subject to a myriad of complications, of which diabetic foot ulcers (DFUs) are the most common with ∼25% chance of developing these wounds throughout their lifetime. Innovation: Currently there are no therapeutic RNAs approved for use in DFUs. Use of dressings containing novel layer-by-layer (LbL)-formulated therapeutic RNAs that inhibit PHD2 and miR-210 can significantly improve diabetic wound healing. These dressings provide sustained release of therapeutic RNAs to the wounds locally without systemic side effects. Clinical Problem Addressed: Diabetic foot wounds are difficult to heal and often result in significant patient morbidity and mortality. Materials and Methods: We used the diabetic neuroischemic rabbit model of impaired wound healing. Diabetes was induced in the rabbits with alloxan, and neuroischemia was induced by ligating the central neurovascular bundle of each ear. Four 6-mm full-thickness wounds were created on each ear. A LbL technique was used to conformally coat the wound dressings with chemically modified RNAs, including an antisense oligonucleotide (antimiR) targeting microRNA-210 (miR-210), an short synthetic hairpin RNA (sshRNA) targeting PHD2, or both. Results: Wound healing was improved by the antimiR-210 but not the PHD2-sshRNA. Specific knockdown of miR-210 in tissue as measured by RT-qPCR was ∼8 Ct greater than nonspecific controls, and this apparent level of knockdown (>99%) suggests that delivery to the tissue is highly efficient at the administered dose. Discussion: Healing of ischemic/neuropathic wounds in diabetic rabbits was accelerated upon inhibition of miR-210 by LbL delivery to the wound bed. miR-210 inhibition was achieved using a chemically modified antisense RNA.

2.
Tissue Eng Part A ; 25(1-2): 44-54, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29644938

RESUMO

In diabetes-associated chronic wounds, the normal response to hypoxia is impaired and many cellular processes involved in wound healing are hindered. Central to the hypoxia response is hypoxia-inducible factor-1α (HIF-1α), which activates multiple factors that enhance wound healing by promoting cellular motility and proliferation, new vessel formation, and re-epithelialization. Prolyl hydroxylase domain-containing protein 2 (PHD2) regulates HIF-1α activity by targeting it for degradation under normoxia. HIF-1α also upregulates microRNA miR-210, which in turn regulates proteins involved in cell cycle control, DNA repair, and mitochondrial respiration in ways that are antagonistic to wound repair. We have identified a highly potent short synthetic hairpin RNA (sshRNA) that inhibits expression of PHD2 and an antisense oligonucleotide (antimiR) that inhibits miR-210. Both oligonucleotides were chemically modified for improved biostability and to mitigate potential immunostimulatory effects. Using the sshRNA to silence PHD2 transcripts stabilizes HIF-1α and, in combination with the antimiR targeting miR-210, increases proliferation and migration of keratinocytes in vitro. To assess activity and delivery in an impaired wound healing model in diabetic mice, PHD2-targeting sshRNAs and miR-210 antimiRs both alone and in combination were formulated for local delivery to wounds using layer-by-layer (LbL) technology. LbL nanofabrication was applied to incorporate sshRNA into a thin polymer coating on a Tegaderm mesh. This coating gradually degrades under physiological conditions, releasing sshRNA and antimiR for sustained cellular uptake. Formulated treatments were applied directly to splinted full-thickness excisional wounds in db/db mice. Cellular uptake was confirmed using fluorescent sshRNA. Wounds treated with a single application of PHD2 sshRNA or antimiR-210 closed 4 days faster than untreated wounds, and wounds treated with both oligonucleotides closed on average 4.75 days faster. Markers for neovascularization and cell proliferation (CD31 and Ki67, respectively) were increased in the wound area following treatment, and vascular endothelial growth factor (VEGF) was increased in sshRNA-treated wounds. Our results suggest that silencing of PHD2 and miR-210 either together or separately by localized delivery of sshRNAs and antimiRs is a promising approach for the treatment of chronic wounds, with the potential for rapid clinical translation.


Assuntos
Diabetes Mellitus Experimental , Angiopatias Diabéticas , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , MicroRNAs/antagonistas & inibidores , Oligonucleotídeos Antissenso/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Angiopatias Diabéticas/tratamento farmacológico , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/patologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Células NIH 3T3 , Oligonucleotídeos Antissenso/genética , Cicatrização/genética
3.
Genome Biol ; 19(1): 105, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30173660

RESUMO

The ability to accurately quantify all the microRNAs (miRNAs) in a sample is important for understanding miRNA biology and for development of new biomarkers and therapeutic targets. We develop a new method for preparing miRNA sequencing libraries, RealSeq®-AC, that involves ligating the miRNAs with a single adapter and circularizing the ligation products. When compared to other methods, RealSeq®-AC provides greatly reduced miRNA sequencing bias and allows the identification of the largest variety of miRNAs in biological samples. This reduced bias also allows robust quantification of miRNAs present in samples across a wide range of RNA input levels.


Assuntos
MicroRNAs/química , Análise de Sequência de RNA/métodos , Viés , Química Encefálica , Humanos , MicroRNAs/análise
4.
J Virol ; 88(9): 4647-56, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24478422

RESUMO

UNLABELLED: We have recently shown that a cocktail of two short synthetic hairpin RNAs (sshRNAs), targeting the internal ribosome entry site of hepatitis C virus (HCV) formulated with lipid nanoparticles, was able to suppress viral replication in chimeric mice infected with HCV GT1a by up to 2.5 log10 (H. Ma et al., Gastroenterology 146:63-66.e5, http://dx.doi.org/10.1053/j.gastro.2013.09.049) Viral load remained about 1 log10 below pretreatment levels 21 days after the end of dosing. We have now sequenced the HCV viral RNA amplified from serum of treated mice after the 21-day follow-up period. Viral RNA from the HCV sshRNA-treated groups was altered in sequences complementary to the sshRNAs and nowhere else in the 500-nucleotide sequenced region, while the viruses from the control group that received an irrelevant sshRNA had no mutations in that region. The ability of the most commonly selected mutations to confer resistance to the sshRNAs was confirmed in vitro by introducing those mutations into HCV-luciferase reporters. The mutations most frequently selected by sshRNA treatment within the sshRNA target sequence occurred at the most polymorphic residues, as identified from an analysis of available clinical isolates. These results demonstrate a direct antiviral activity with effective HCV suppression, demonstrate the added selective pressure of combination therapy, and confirm an RNA interference (RNAi) mechanism of action. IMPORTANCE: This study presents a detailed analysis of the impact of treating a hepatitis C virus (HCV)-infected animal with synthetic hairpin-shaped RNAs that can degrade the virus's RNA genome. These RNAs can reduce the viral load in these animals by over 99% after 1 to 2 injections. The study results confirm that the viral rebound that often occurred a few weeks after treatment is due to emergence of a virus whose genome is mutated in the sequences targeted by the RNAs. The use of two RNA inhibitors, which is more effective than use of either one by itself, requires that any resistant virus have mutations in the targets sites of both agents, a higher hurdle, if the virus is to retain the ability to replicate efficiently. These results demonstrate a direct antiviral activity with effective HCV suppression, demonstrate the added selective pressure of combination therapy, and confirm an RNAi mechanism of action.


Assuntos
Antivirais/metabolismo , Hepacivirus/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Seleção Genética , Animais , Modelos Animais de Doenças , Hepacivirus/genética , Hepacivirus/isolamento & purificação , Hepatite C/tratamento farmacológico , Hepatite C/virologia , Masculino , Camundongos , Mutação , RNA Interferente Pequeno/genética , Análise de Sequência
5.
Gastroenterology ; 146(1): 63-6.e5, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24076507

RESUMO

Short synthetic hairpin RNAs (sshRNAs) (SG220 and SG273) that target the internal ribosome entry site of the hepatitis C virus (HCV) were formulated into lipid nanoparticles and administered intravenously to HCV-infected urokinase plasminogen activator-severe combined immunodeficient mice with livers repopulated with human hepatocytes (humanized livers). Weekly administration of 2.5 mg/kg of each sshRNA for 2 weeks resulted in a maximal mean reduction in viral load of 2.5 log10 from baseline. The viral load remained reduced by more than 90% at 14 days after the last dose was given. The sshRNAs were well tolerated and did not significantly increase liver enzyme levels. These findings indicate the in vivo efficacy of a synthetic RNA inhibitor against the HCV genome in reducing HCV infection.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , Carga Viral/efeitos dos fármacos , Animais , Quimera , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos SCID , Nanopartículas
6.
Mol Ther Nucleic Acids ; 2: e123, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24045712

RESUMO

We previously identified short synthetic shRNAs (sshRNAs) that target a conserved hepatitis C virus (HCV) sequence within the internal ribosome entry site (IRES) of HCV and potently inhibit HCV IRES-linked gene expression. To assess in vivo liver delivery and activity, the HCV-directed sshRNA SG220 was formulated into lipid nanoparticles (LNP) and injected i.v. into mice whose livers supported stable HCV IRES-luciferase expression from a liver-specific promoter. After a single injection, RNase protection assays for the sshRNA and (3)H labeling of a lipid component of the nanoparticles showed efficient liver uptake of both components and long-lasting survival of a significant fraction of the sshRNA in the liver. In vivo imaging showed a dose-dependent inhibition of luciferase expression (>90% 1 day after injection of 2.5 mg/kg sshRNA) with t1/2 for recovery of about 3 weeks. These results demonstrate the ability of moderate levels of i.v.-injected, LNP-formulated sshRNAs to be taken up by liver hepatocytes at a level sufficient to substantially suppress gene expression. Suppression is rapid and durable, suggesting that sshRNAs may have promise as therapeutic agents for liver indications.Molecular Therapy-Nucleic Acids (2013) 2, e123; doi:10.1038/mtna.2013.50; published online 17 September 2013.

7.
Methods Mol Biol ; 942: 279-90, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23027057

RESUMO

Synthetic shRNAs that are too short to be Dicer substrates (short shRNAs or sshRNAs) can be highly potent RNAi effectors when properly designed, with activities similar to or more potent than the more commonly used siRNAs targeting the same sequences. sshRNAs can be designed in two possible orientations: left- or right-hand loop, designated L-sshRNAs and R-sshRNAs, respectively. Because L- and R-sshRNAs are processed by the RNAi machinery in different ways, optimal designs for the two formats diverge in several key aspects. Here, we describe the principles of design and chemical modification of highly effective L- and R-sshRNAs.


Assuntos
Desenho de Fármacos , Interferência de RNA , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Polimerização
8.
Nucleic Acids Res ; 40(18): 9255-71, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22810205

RESUMO

Small hairpin RNAs (shRNAs) having duplex lengths of 25-29 bp are normally processed by Dicer into short interfering RNAs (siRNAs) before incorporation into the RNA-induced silencing complex (RISC). However, shRNAs of ≤ 19 bp [short shRNAs (sshRNAs)] are too short for Dicer to excise their loops, raising questions about their mechanism of action. sshRNAs are designated as L-type or R-type according to whether the loop is positioned 3' or 5' to the guide sequence, respectively. Using nucleotide modifications that inhibit RNA cleavage, we show that R- but not L-sshRNAs require loop cleavage for optimum activity. Passenger-arm slicing was found to be important for optimal functioning of L-sshRNAs but much less important for R-sshRNAs that have a cleavable loop. R-sshRNAs could be immunoprecipitated by antibodies to Argonaute-1 (Ago1); complexes with Ago1 contained both intact and loop-cleaved sshRNAs. In contrast, L-sshRNAs were immunoprecipitated with either Ago1 or Ago2 and were predominantly sliced in the passenger arm of the hairpin. However, 'pre-sliced' L-sshRNAs were inactive. We conclude that active L-sshRNAs depend on slicing of the passenger arm to facilitate opening of the duplex, whereas R-sshRNAs primarily act via loop cleavage to generate a 5'-phosphate at the 5'-end of the guide strand.


Assuntos
Interferência de RNA , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Proteínas Argonautas/imunologia , Proteínas Argonautas/metabolismo , Linhagem Celular , Humanos , Imunoprecipitação , MicroRNAs/química , MicroRNAs/metabolismo , Clivagem do RNA , Precursores de RNA/química , Precursores de RNA/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Ribonuclease III/metabolismo
9.
Anal Chem ; 82(7): 2652-60, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20201504

RESUMO

A robust screening assay employing solid phase extraction (SPE) followed by a novel aptamer-based procedure is presented for the rapid detection and semiquantitation of the triphenylmethane dye, Malachite Green (MG) and its primary metabolite Leucomalachite Green (LMG) in fish tissue. To the authors' knowledge, this is the first reported use of an RNA aptamer for the development of a diagnostic assay for the detection of chemical residues in food. The aptamer based screening assay is found to be highly specific for MG; but has negligible affinity for the LMG metabolite. However, because the LMG metabolite is lipophilic and known to be highly persistent in tissues, an oxidation step has been incorporated within the sample cleanup procedure to ensure that all LMG residues are converted to MG prior to measurement. This article provides evidence that an oligonucleotide aptamer can be used as an alternative recognition element to conventional antibodies with application to the detection of residues in food. Furthermore, this finding has the future potential to reduce the number of animals currently being used in the production of antibodies for immunodiagnostic kits.


Assuntos
Aptâmeros de Nucleotídeos/química , Eletroforese em Gel de Poliacrilamida/métodos , RNA/química , Corantes de Rosanilina/análise , Animais , Peixes/metabolismo , Contaminação de Alimentos/análise , Corantes de Rosanilina/isolamento & purificação , Extração em Fase Sólida
10.
RNA ; 16(1): 106-17, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19952116

RESUMO

Small hairpin RNAs (shRNAs) are widely used in RNAi studies and typically consist of a stem of 19-29 base pairs (bp), a loop of at least 4 nucleotides (nt), and a dinucleotide overhang at the 3' end. Compared with shRNAs with 21-29 bp stems, we have found that shRNAs with 19-bp or shorter stems (sshRNAs) possess some unique structure-activity features that depend on whether the antisense strand is positioned 5' or 3' to the loop (L- or R-type sshRNAs, respectively). L sshRNAs can have IC(50)s in the very low picomolar range, and sshRNAs with nominal loop sizes of 1 or 4 nt were at least as active as those with longer loops. L sshRNAs remained highly potent even when the 3' end of the antisense strand was directly linked with the 5' end of the sense strand. In this case, the sense strand can be shorter than the antisense strand, and the loop can be formed entirely by the 3' end of the antisense strand. Monomer sshRNAs are not processed by recombinant Dicers in vitro. Although they can form dimers that are sometimes Dicer substrates, their RNAi activity is not dependent on the formation of such structures. Our findings have implications for the mechanism of action of sshRNAs, and the ability to design highly potent shRNAs with minimal length is encouraging for the prospects of the therapeutic use of direct-delivered shRNAs.


Assuntos
Conformação de Ácido Nucleico , Interferência de RNA , RNA Interferente Pequeno/química , RNA Interferente Pequeno/farmacologia , Pareamento Incorreto de Bases/fisiologia , Sequência de Bases/fisiologia , Domínio Catalítico , Células Cultivadas , RNA Helicases DEAD-box/metabolismo , Dimerização , Eficiência/fisiologia , Humanos , Interferons/metabolismo , Modelos Biológicos , Interferência de RNA/fisiologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ribonuclease III/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato/genética
11.
RNA ; 16(1): 118-30, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19948766

RESUMO

Small hairpin RNAs (shRNAs) with 19-base-pair, or shorter, stems (short shRNAs [sshRNAs]) have been found to constitute a class whose mechanism of action appears to be distinct from that of small interfering RNAs (siRNAs) or longer shRNAs. These sshRNAs can be as active as canonical siRNAs or longer shRNAs. Their activity is affected by whether the antisense strand is positioned 5' or 3' to the loop (L or R sshRNAs, respectively). Dicer seems not to be involved in the processing of sshRNAs, although the mechanism of target gene suppression by these hairpins is through Ago2-mediated mRNA cleavage. In this study, the effects of chemical modifications on the potency, serum stability, and innate immune response of sshRNAs were investigated. Deoxynucleotide substitution and 2'-O-methyl (2'-OMe) modification in the sense strand and loop did not affect silencing activity, but, unlike with siRNAs, when placed in the antisense strand these modifications were detrimental. Conjugation with bulky groups at the 5'-end of L sshRNAs or 3'-end of R sshRNAs had a negative impact on the potency. Unmodified sshRNAs in dimer form or with blunt ends were immunostimulatory. Some modifications such as 3'-end conjugation and phosphorothioate linkages on the backbone of the sshRNAs could also induce inflammatory cytokine production. However, 2'-OMe substitution of sshRNAs abrogated the innate immune response and improved the serum stability of the hairpins.


Assuntos
Imunização , RNA Interferente Pequeno/química , RNA Interferente Pequeno/imunologia , RNA Interferente Pequeno/farmacocinética , Soro/metabolismo , Células Cultivadas , Desoxirribonucleotídeos/química , Estabilidade de Medicamentos , Humanos , Imunidade Inata/efeitos dos fármacos , Metilação , Modelos Biológicos , Oligonucleotídeos Fosforotioatos/química , Oligonucleotídeos Fosforotioatos/imunologia , Oligonucleotídeos Fosforotioatos/farmacocinética , Mutação Puntual/fisiologia , Interferência de RNA/efeitos dos fármacos , Interferência de RNA/fisiologia , Estabilidade de RNA/fisiologia , RNA Interferente Pequeno/genética , Soro/química , Relação Estrutura-Atividade
12.
Nucleic Acids Res ; 36(21): 6752-66, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18953032

RESUMO

We have developed a novel class of antisense agents, RNA Lassos, which are capable of binding to and circularizing around complementary target RNAs. The RNA Lasso consists of a fixed sequence derived from the hairpin ribozyme and an antisense segment whose size and sequence can be varied to base pair with accessible sites in the target RNA. The ribozyme catalyzes self-processing of the 5'- and 3'-ends of a transcribed Lasso precursor and ligates the processed ends to produce a circular RNA. The circular and linear forms of the self-processed Lasso coexist in an equilibrium that is dependent on both the Lasso sequence and the solution conditions. Lassos form strong, noncovalent complexes with linear target RNAs and form true topological linkages with circular targets. Lasso complexes with linear RNA targets were detected by denaturing gel electrophoresis and were found to be more stable than ordinary RNA duplexes. We show that expression of a fusion mRNA consisting of a sequence from the murine tumor necrosis factor-alpha (TNF-alpha) gene linked to luciferase reporter can be specifically and efficiently blocked by an anti-TNF Lasso. We also show in cell culture experiments that Lassos directed against Fas pre-mRNA were able to induce a change in alternative splicing patterns.


Assuntos
Regulação da Expressão Gênica , RNA Antissenso/química , RNA Catalítico/química , Processamento Alternativo , Animais , Sequência de Bases , Humanos , Células Jurkat , Camundongos , Dados de Sequência Molecular , Biossíntese de Proteínas , RNA/química , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Antissenso/metabolismo , RNA Catalítico/metabolismo , RNA Circular , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/genética , Receptor fas/genética
13.
Med Sci Monit ; 12(4): RA67-74, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16572063

RESUMO

Antisense oligonucleotide agents induce the inhibition of target gene expression in a sequence-specific manner by exploiting the ability of oligonucleotides to bind to target RNAs via Watson-Crick hybridization. Once bound, the antisense agent either disables or induces the degradation of the target RNA. This technology may be used for therapeutic purposes, functional genomics, and target validation. There are three major categories of gene-silencing molecules: (1) antisense oligonucleotide derivatives that, depending on their type, recruit RNase H to cleave the target mRNA or inhibit translation by steric hindrance; (2) ribozymes and deoxyribozymes--catalytically active oligonucleotides that cause RNA cleavage; (3) small interfering double-stranded RNA molecules that induce RNA degradation through a natural gene-silencing pathway called RNA interference (RNAi). RNAi is the latest addition to the family of antisense technologies and has rapidly become the most widely used approach for gene knockdown because of its potency. In this mini-review, we introduce the RNAi effect, briefly compare it with existing antisense technologies, and discuss its therapeutic potential, focusing on recent animal studies and ongoing clinical trials. RNAi may provide new therapeutics for treating viral infections, neurodegenerative diseases, septic shock, macular degeneration, cancer, and other illnesses, although in vivo delivery of small interfering RNAs remains a significant obstacle.


Assuntos
Interferência de RNA , Animais , Humanos , Neoplasias/terapia , Doenças Neurodegenerativas/terapia , Oligonucleotídeos Antissenso/genética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Viroses/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...