Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 11: 1737, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013826

RESUMO

Osteoporosis stems from an unbalance between bone mineral resorption and deposition. Among the numerous cellular players responsible for this unbalance bone marrow (BM) monocytes/macrophages, mast cells, T and B lymphocytes, and dendritic cells play a key role in regulating osteoclasts, osteoblasts, and their progenitor cells through interactions occurring in the context of the different bone compartments (cancellous and cortical). Therefore, the microtopography of immune cells inside trabecular and compact bone is expected to play a relevant role in setting initial sites of osteoporotic lesion. Indeed, in physiological conditions, each immune cell type preferentially occupies either endosteal, subendosteal, central, and/or perisinusoidal regions of the BM. However, in the presence of an activation, immune cells recirculate throughout these different microanatomical areas giving rise to a specific distribution. As a result, the trabeculae of the cancellous bone and endosteal free edge of the diaphyseal case emerge as the primary anatomical targets of their osteoporotic action. Immune cells may also transit from the BM to the depth of the compact bone, thanks to the efferent venous capillaries coursing in the Haversian and Volkmann canals. Consistently, the innermost parts of the osteons and the periosteum are later involved by their immunomodulatory action, becoming another site of mineral reabsorption in the course of an osteoporotic insult. The novelty of our updating is to highlight the microtopography of bone immune cells in the cancellous and cortical compartments in relation to the most consistent data on their action in bone remodeling, to offer a mechanist perspective useful to dissect their role in the osteoporotic process, including bone damage derived from the immunomodulatory effects of endocrine disrupting chemicals.


Assuntos
Remodelação Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Disruptores Endócrinos/efeitos adversos , Sistema Imunitário/efeitos dos fármacos , Fatores Imunológicos/efeitos adversos , Osteoporose/induzido quimicamente , Animais , Osso e Ossos/imunologia , Osso e Ossos/fisiopatologia , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/fisiopatologia , Osteoporose/imunologia , Osteoporose/fisiopatologia
2.
PLoS One ; 15(10): e0239932, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33085676

RESUMO

In cancer metastasis, intravasation of the invasive tumor cell (TCi) represents one of the most relevant events. During the last years, models regarding cancer cell intravasation have been proposed, such as the "endocanalicular transendothelial crossing" (ETC) theory. This theory describes the interplay between two adjacent endothelial cells and the TCi or a leukocyte during intravasation. Two endothelial cells create a channel with their cell membranes, in which the cell fits in without involving endothelial cell intercellular junctions, reaching the lumen through a transendothelial passage. In the present study, ten SCID mice were subcutaneously xenotransplanted with the HEK-EBNA293-VEGF-D cell line and euthanized after 35 days. Post-mortem examinations were performed and proper specimens from tumors were collected. Routine histology and immunohistochemistry for Ki-67, pAKT, pERK, ZEB-1, TWIST-1, F-actin, E-cadherin and LYVE-1 were performed followed by ultrastructural serial sections analysis. A novel experimental approach involving Computed Tomography (CT) combined with 3D digital model reconstruction was employed. The analysis of activated transcription factors supports that tumor cells at the periphery potentially underwent an epithelial-to-mesenchymal transition (EMT)-like process. Topographical analysis of LYVE-1 immunolabeled lymphatics revealed a peritumoral localisation. TEM investigations of the lymphatic vessels combined with 3D digital modelling enhanced the understanding of the endotheliocytes behavior during TCi intravasation, clarifying the ETC theory. Serial ultrastructural analysis performed within tumor periphery revealed numerous cells during the ETC process. Furthermore, this study demonstrates that ETC is an intravasation mode more frequently used by the TCi than by leukocytes during intravasation in the HEK-EBNA293-VEGF-D xenograft model and lays down the potential basis for promising future studies regarding intravasation blocking therapy.


Assuntos
Transição Epitelial-Mesenquimal , Metástase Linfática , Neoplasias , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos SCID , Transplante de Neoplasias , Neoplasias/metabolismo , Neoplasias/patologia
3.
J Anat ; 235(6): 1036-1044, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31637719

RESUMO

An academic, anatomist, and Lombrosian psychiatrist active at the University of Parma in Italy at the end of the 19th century, Lorenzo Tenchini produced ceroplastic-like masks that are unique in the anatomical Western context. These were prepared from 1885 to 1893 with the aim of 'cataloguing' the behaviour of prison inmates and psychiatric patients based on their facial surface anatomy. Due to the lack of any reference to the procedure used to prepare the masks, studies were undertaken by our group using X-ray scans, infrared spectroscopy, bioptic sampling, and microscopy analysis of the mask constituents. Results showed that the masks were stratified structures including plaster, cotton gauze/human epidermis, and wax, leading to a fabrication procedure reminiscent of 'additive layer manufacturing'. Differences in the depths of these layers were observed in relation to the facial contours, suggesting an attempt to reproduce, at least partially, the three-dimensional features of the facial soft tissues. We conclude the Tenchini masks are the first historical antecedent of the experimental method for face reconstruction used in the early 2000s to test the feasibility of transferring a complete strip of face and scalp from a deceased donor to a living recipient, in preparation for a complete face transplant. In addition, the layering procedure adopted conceptually mimics that developed only in the late 20th century for computer-aided rapid prototyping, and recently applied to bioengineering with biomaterials for a number of human structures including parts of the skull and face. Finally, the masks are a relevant example of mixed ceroplastic-cutaneous preparations in the history of anatomical research for clinical purposes.


Assuntos
Antropologia Física/história , Bioengenharia/história , Transplante de Face/história , Procedimentos de Cirurgia Plástica/história , História do Século XIX , Humanos , Itália
4.
Talanta ; 193: 1-8, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30368276

RESUMO

Here we have developed and validated an original LC-MS/MS SRM procedure flexible enough to quantitatively screen collagen types I-V in copies of the same type of stromal matrix prepared with different protocols of cell removal to retain the native 3D architecture of the ECM. In a first step, identification of tryptic sequences exclusive to specific chains (either α1 or α2) of mammalian collagen standards types I-V was pursued using a combination of LC-LIT-Orbitrap XL and LC-MS/MS SRM analyses. In a second step, the adult male rat thyroid was decellularized using three different protocols specifically set for engineering of bioartificial 3D thyroid organoids. In a third step, DNA analysis of the decellularized 3D thyroid stroma was pursued to exclude contamination by cell nuclear debris. In a final step, collagen standards and 3D thyroid matrices were digested using the same mechanical / enzymatic protocol, and quantitative profiles of collagen types I-V ensued using comparisons of ionic intensities between tryptic peptides of collagen standards and matrices, as derived from targeted LC-MS/MS SRM analysis. Collectively, the procedure allowed for detection and quantitation of collagen types I-V at a femtomolar level in thyroid gland stromal matrices initially maintaining their original 3D architecture, tryptically digested through a method common to collagen standards and thyroid ECM, with satisfactory reproducibility of results, moderate procedural cost, and limited analytical time.


Assuntos
Cromatografia Líquida/métodos , Matriz Extracelular/química , Colágenos Fibrilares/análise , Peptídeos/análise , Espectrometria de Massas em Tandem/métodos , Glândula Tireoide/química , Animais , Colágenos Fibrilares/química , Colágenos Fibrilares/isolamento & purificação , Limite de Detecção , Masculino , Peptídeos/isolamento & purificação , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
5.
J Mater Sci Mater Med ; 25(10): 2421-36, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24997163

RESUMO

Few data are available on the effect of biomaterials on surface antigens of mammalian bone marrow-derived, adult mesenchymal stromal cells (MSCs). Since poly(L-lactic acid) or PLLA is largely used in tissue engineering of human bones, and we are developing a reverse engineering program to prototype with biomaterials the vascular architecture of bones for their bioartificial reconstruction, both in humans and animal models, we have studied the effect of porous, flat and smooth PLLA scaffolds on the immunophenotype of in vitro grown, rat MSCs in the absence of any coating, co-polymeric enrichment, and differentiation stimuli. Similar to controls on plastic, we show that our PLLA scaffold does not modify the distribution of some surface markers in rat MSCs. In particular, the maintained expression of CD73 and CD90 on two different subpopulations (small and large cells) is consistent with their adhesion to the PLLA scaffold through specialized appendages, and to their prominent content in actin. In addition, our PLLA scaffold favours retention of the intermediate filament desmin, believed a putative marker of undifferentiated state. Finally, it preserves all rat MSCs morphotypes, and allows for their survival, adhesion to the substrate, and replication. Remarkably, a subpopulation of rat MSCs grown on our PLLA scaffold exhibited formation of membrane protrusions of uncertain significance, although in a size range and morphology compatible with either motility blebs or shedding vesicles. In summary, our PLLA scaffold has no detrimental effect on a number of features of rat MSCs, primarily the expression of CD73 and CD90.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ácido Láctico/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Polímeros/farmacologia , Alicerces Teciduais , 5'-Nucleotidase/metabolismo , Animais , Biomarcadores/metabolismo , Células da Medula Óssea/metabolismo , Células da Medula Óssea/fisiologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Imunofenotipagem , Ácido Láctico/química , Masculino , Teste de Materiais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Poliésteres , Polímeros/química , Porosidade , Ratos , Ratos Sprague-Dawley , Antígenos Thy-1/metabolismo , Alicerces Teciduais/química
6.
Ann Anat ; 193(5): 381-94, 2011 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-21803554

RESUMO

Ex situ bioengineering is one of the most promising perspectives in the field of regenerative medicine allowing for organ reconstruction outside the living body; i.e. on the laboratory bench. A number of hollow viscera of the cardiovascular, respiratory, genitourinary, and digestive systems have been successfully bioengineered ex situ, exploiting biocompatible scaffolds with a 3D morphology that recapitulates that of the native organ (organomorphic scaffold). In contrast, bioengineering of entire soft tissue organs and, in particular endocrine glands still remains a substantial challenge. Primary reasons are that no organomorphic scaffolding for endocrine viscera have as yet been entirely assembled using biocompatible materials, nor is there a bioreactor performance capable of supporting growth within the thickness range of the regenerating cell mass which has proven to be reliable enough to ensure formation of a complete macroscopic gland ex situ. Current technical options for reconstruction of endocrine viscera include either biocompatible 3D reticular scaffolds lacking any organomorphic geometry, or allogenic/xenogenic acellular 3D matrices derived from a gland similar to that to be bioengineered, eventually recellularized by autologous/heterologous cells. In 2007, our group designed, using biocompatible material, an organomorphic scaffold-bioreactor unit for bioengineering ex situ the human thyroid gland, chosen as a model for its simple anatomical organization (repetitive follicular cavities). This unit reproduces both the 3D native geometry of the human thyroid stromal/vascular scaffold, and the natural thyrocyte/vascular interface. It is now under intense investigation as an experimental tool to test cellular 3D auto-assembly of thyroid tissue and its related vascular system up to the ex situ generation of a 3D macroscopic thyroid gland. We believe that these studies will lay the groundwork for a new concept in regenerative medicine of soft tissue and endocrine organs; i.e. that the organomorphism of a biocompatible scaffold-bioreactor complex is essential to both the 3D organization of seeded stem cells/precursor cells and their phenotypic fate as glandular/parenchymal/vascular elements, eventually leading to a physiologically competent and immuno-tolerant bioconstruct, macroscopically suitable for transplantation and clinical applications.


Assuntos
Órgãos Bioartificiais , Bioengenharia , Glândulas Endócrinas/fisiologia , Medicina Regenerativa , Animais , Órgãos Bioartificiais/tendências , Humanos , Medicina Regenerativa/tendências
7.
Acta Biomed ; 78 Suppl 1: 129-55, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17465331

RESUMO

A new concept for ex situ endocrine organ bioengineering is presented, focused on the realization of a human bioartificial thyroid gland. It is based on the theoretical assumption and experimental evidence that symmetries in geometrical coordinates of the thyroid tissue remain invariant with respect to developmental, physiological or pathophysiological transformations occuring in the gland architecture. This topological arrangement is dependent upon physical connections established between cells, cell adhesion molecules and extracellular matrix, leading to the view that the thyroid parenchyma behaves like a deformable "putty", moulded onto an elastic stromal/vascular scaffold (SVS) dictating the final morphology of the gland. In particular, we have raised the idea that the geometry of the SVS per se provides pivotal epigenetic information to address the genetically-programmed, thyrocyte and endothelial/vascular proliferation and differentiation towards a functionally mature gland, making organ form a pre-requirementfor organ function. A number of experimental approaches are explored to obtain a reliable replica of a human thyroid SVS, and an informatic simulation is designed based on fractal growth of the thyroid intraparenchymal arterial tree. Various tissue-compatible and degradable synthetic or biomimetic polymers are discussed to act as a template of the thyroid SVS, onto which to co-seed autologous human thyrocyte (TPC) and endothelial/vascular (EVPC) progenitor cells. Harvest and expansion of both TPC and EVPC in primary culture are considered, with specific attention to the selection of normal thyrocytes growing at a satisfactory rate to colonize the synthetic matrix. In addition, both in vitro and in vivo techniques to authenticate TPC and EVPC lineage differentiation are reviewed, including immunocytochemistry, reverse trascriptase-polymerase chain reaction, flow cytomery and proteomics. Finally, analysis of viability of the thyroid construct following implantation in animal hosts is proposed, with the intent to obtain a bioartificial thyroid gland morphologically and functionally adequate for transplantation. We believe that the biotechnological scenario proposed herein may provide a template to construct other, more complex and clinically-relevant bioartificial endocrine organs ex situ, such as human pancreatic islets and the liver, and perhaps a new approach to brain bioengineering.


Assuntos
Órgãos Bioartificiais , Modelos Biológicos , Técnicas de Cultura de Órgãos/métodos , Doenças da Glândula Tireoide/cirurgia , Glândula Tireoide , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis , Biopolímeros , Linhagem da Célula , Sobrevivência Celular , Células Cultivadas/citologia , Técnicas de Cocultura , Simulação por Computador , Células Endoteliais/citologia , Endotélio Vascular/citologia , Matriz Extracelular , Fractais , Humanos , Imageamento Tridimensional , Ilhotas Pancreáticas/citologia , Masculino , Morfogênese , Neovascularização Fisiológica , Técnicas de Cultura de Órgãos/instrumentação , Adeno-Hipófise/citologia , Ratos , Células Estromais/citologia , Glândula Tireoide/irrigação sanguínea , Glândula Tireoide/citologia , Glândula Tireoide/embriologia , Glândula Tireoide/transplante , Engenharia Tecidual/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...