Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38352409

RESUMO

With a rise in antibiotic resistance and chronic infection, the metabolic response of Salmonella enterica serovar Typhimurium to various dietary conditions over time remains an understudied avenue for novel, targeted therapeutics. Elucidating how enteric pathogens respond to dietary variation not only helps us decipher the metabolic strategies leveraged for expansion but also assists in proposing targets for therapeutic interventions. Here, we use a multi-omics approach to identify the metabolic response of Salmonella enterica serovar Typhimurium in mice on both a fibrous diet and high-fat diet over time. When comparing Salmonella gene expression between diets, we found a preferential use of respiratory electron acceptors consistent with increased inflammation of the high-fat diet mice. Looking at the high-fat diet over the course of infection, we noticed heterogeneity of samples based on Salmonella ribosomal activity, which separated into three infection phases: early, peak, and late. We identified key respiratory, carbon, and pathogenesis gene expression descriptive of each phase. Surprisingly, we identified genes associated with host-cell entry expressed throughout infection, suggesting sub-populations of Salmonella or stress-induced dysregulation. Collectively, these results highlight not only the sensitivity of Salmonella to its environment but also identify phase-specific genes that may be used as therapeutic targets to reduce infection. Importance: Identifying novel therapeutic strategies for Salmonella infection that occur in relevant diets and over time is needed with the rise of antibiotic resistance and global shifts towards Western diets that are high in fat and low in fiber. Mice on a high-fat diet are more inflamed compared to those on a fibrous diet, creating an environment that results in more favorable energy generation for Salmonella . Over time on a high-fat diet, we observed differential gene expression across infection phases. Together, these findings reveal the metabolic tuning of Salmonella to dietary and temporal perturbations. Research like this, exploring the dimensions of pathogen metabolic plasticity, can pave the way for rationally designed strategies to control disease.

2.
bioRxiv ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38293109

RESUMO

Salmonella enterica serovar Typhimurium is a pervasive enteric pathogen and an ongoing global threat to public health. Ecological studies in the Salmonella impacted gut remain underrepresented in the literature, discounting the microbiome mediated interactions that may inform Salmonella physiology during colonization and infection. To understand the microbial ecology of Salmonella remodeling of the gut microbiome, here we performed multi-omics approaches on fecal microbial communities from untreated and Salmonella -infected mice. Reconstructed genomes recruited metatranscriptomic and metabolomic data providing a strain-resolved view of the expressed metabolisms of the microbiome during Salmonella infection. This data informed possible Salmonella interactions with members of the gut microbiome that were previously uncharacterized. Salmonella- induced inflammation significantly reduced the diversity of transcriptionally active members in the gut microbiome, yet increased gene expression was detected for 7 members, with Luxibacter and Ligilactobacillus being the most active. Metatranscriptomic insights from Salmonella and other persistent taxa in the inflamed microbiome further expounded the necessity for oxidative tolerance mechanisms to endure the host inflammatory responses to infection. In the inflamed gut lactate was a key metabolite, with microbiota production and consumption reported amongst transcriptionally active members. We also showed that organic sulfur sources could be converted by gut microbiota to yield inorganic sulfur pools that become oxidized in the inflamed gut, resulting in thiosulfate and tetrathionate that supports Salmonella respiration. Advancement of pathobiome understanding beyond inferences from prior amplicon-based approaches can hold promise for infection mitigation, with the active community outlined here offering intriguing organismal and metabolic therapeutic targets.

3.
bioRxiv ; 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37502915

RESUMO

Predicting elemental cycles and maintaining water quality under increasing anthropogenic influence requires understanding the spatial drivers of river microbiomes. However, the unifying microbial processes governing river biogeochemistry are hindered by a lack of genome-resolved functional insights and sampling across multiple rivers. Here we employed a community science effort to accelerate the sampling, sequencing, and genome-resolved analyses of river microbiomes to create the Genome Resolved Open Watersheds database (GROWdb). This resource profiled the identity, distribution, function, and expression of thousands of microbial genomes across rivers covering 90% of United States watersheds. Specifically, GROWdb encompasses 1,469 microbial species from 27 phyla, including novel lineages from 10 families and 128 genera, and defines the core river microbiome for the first time at genome level. GROWdb analyses coupled to extensive geospatial information revealed local and regional drivers of microbial community structuring, while also presenting a myriad of foundational hypotheses about ecosystem function. Building upon the previously conceived River Continuum Concept 1 , we layer on microbial functional trait expression, which suggests the structure and function of river microbiomes is predictable. We make GROWdb available through various collaborative cyberinfrastructures 2, 3 so that it can be widely accessed across disciplines for watershed predictive modeling and microbiome-based management practices.

4.
Cancer ; 129(22): 3620-3632, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37382186

RESUMO

BACKGROUND: Germline genome sequencing in childhood cancer precision medicine trials may reveal pathogenic or likely pathogenic variants in cancer predisposition genes in more than 10% of children. These findings can have implications for diagnosis, treatment, and the child's and family's future cancer risk. Understanding parents' perspectives of germline genome sequencing is critical to successful clinical implementation. METHODS: A total of 182 parents of 144 children (<18 years of age) with poor-prognosis cancers enrolled in the Precision Medicine for Children with Cancer trial completed a questionnaire at enrollment and after the return of their child's results, including clinically relevant germline findings (received by 13% of parents). Parents' expectations of germline genome sequencing, return of results preferences, and recall of results received were assessed. Forty-five parents (of 43 children) were interviewed in depth. RESULTS: At trial enrollment, most parents (63%) believed it was at least "somewhat likely" that their child would receive a clinically relevant germline finding. Almost all expressed a preference to receive a broad range of germline genomic findings, including variants of uncertain significance (88%). Some (29%) inaccurately recalled receiving a clinically relevant germline finding. Qualitatively, parents expressed confusion and uncertainty after the return of their child's genome sequencing results by their child's clinician. CONCLUSIONS: Many parents of children with poor-prognosis childhood cancer enrolled in a precision medicine trial expect their child may have an underlying cancer predisposition syndrome. They wish to receive a wide scope of information from germline genome sequencing but may feel confused by the reporting of trial results.


Assuntos
Neoplasias , Humanos , Criança , Neoplasias/genética , Neoplasias/terapia , Neoplasias/diagnóstico , Motivação , Medicina de Precisão/métodos , Pais , Genótipo
5.
Microbiome ; 11(1): 114, 2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210515

RESUMO

BACKGROUND: The murine CBA/J mouse model widely supports immunology and enteric pathogen research. This model has illuminated Salmonella interactions with the gut microbiome since pathogen proliferation does not require disruptive pretreatment of the native microbiota, nor does it become systemic, thereby representing an analog to gastroenteritis disease progression in humans. Despite the value to broad research communities, microbiota in CBA/J mice are not represented in current murine microbiome genome catalogs. RESULTS: Here we present the first microbial and viral genomic catalog of the CBA/J murine gut microbiome. Using fecal microbial communities from untreated and Salmonella-infected, highly inflamed mice, we performed genomic reconstruction to determine the impacts on gut microbiome membership and functional potential. From high depth whole community sequencing (~ 42.4 Gbps/sample), we reconstructed 2281 bacterial and 4516 viral draft genomes. Salmonella challenge significantly altered gut membership in CBA/J mice, revealing 30 genera and 98 species that were conditionally rare and unsampled in non-inflamed mice. Additionally, inflamed communities were depleted in microbial genes that modulate host anti-inflammatory pathways and enriched in genes for respiratory energy generation. Our findings suggest decreases in butyrate concentrations during Salmonella infection corresponded to reductions in the relative abundance in members of the Alistipes. Strain-level comparison of CBA/J microbial genomes to prominent murine gut microbiome databases identified newly sampled lineages in this resource, while comparisons to human gut microbiomes extended the host relevance of dominant CBA/J inflammation-resistant strains. CONCLUSIONS: This CBA/J microbiome database provides the first genomic sampling of relevant, uncultivated microorganisms within the gut from this widely used laboratory model. Using this resource, we curated a functional, strain-resolved view on how Salmonella remodels intact murine gut communities, advancing pathobiome understanding beyond inferences from prior amplicon-based approaches. Salmonella-induced inflammation suppressed Alistipes and other dominant members, while rarer commensals like Lactobacillus and Enterococcus endure. The rare and novel species sampled across this inflammation gradient advance the utility of this microbiome resource to benefit the broad research needs of the CBA/J scientific community, and those using murine models for understanding the impact of inflammation on the gut microbiome more generally. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Animais , Camundongos , Microbioma Gastrointestinal/genética , Modelos Animais de Doenças , Camundongos Endogâmicos CBA , Inflamação , Bacteroidetes
6.
bioRxiv ; 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37066413

RESUMO

Although river ecosystems comprise less than 1% of Earth's total non-glaciated area, they are critical modulators of microbially and virally orchestrated global biogeochemical cycles. However, most studies either use data that is not spatially resolved or is collected at timepoints that do not reflect the short life cycles of microorganisms. As a result, the relevance of microbiome interactions and the impacts they have over time on biogeochemical cycles are poorly understood. To assess how viral and microbial communities change over time, we sampled surface water and pore water compartments of the wastewater-impacted River Erpe in Germany every 3 hours over a 48-hour period resulting in 32 metagenomes paired to geochemical and metabolite measurements. We reconstructed 6,500 viral and 1,033 microbial genomes and found distinct communities associated with each river compartment. We show that 17% of our vMAGs clustered to viruses from other ecosystems like wastewater treatment plants and rivers. Our results also indicated that 70% of the viral community was persistent in surface waters, whereas only 13% were persistent in the pore waters taken from the hyporheic zone. Finally, we predicted linkages between 73 viral genomes and 38 microbial genomes. These putatively linked hosts included members of the Competibacteraceae, which we suggest are potential contributors to carbon and nitrogen cycling. Together, these findings demonstrate that microbial and viral communities in surface waters of this urban river can exist as stable communities along a flowing river; and raise important considerations for ecosystem models attempting to constrain dynamics of river biogeochemical cycles.

7.
mBio ; 14(3): e0018223, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37042671

RESUMO

Spore-forming bacteria are prevalent in mammalian guts and have implications for host health and nutrition. The production of dormant spores is thought to play an important role in the colonization, persistence, and transmission of these bacteria. Spore formation also modifies interactions among microorganisms such as infection by phages. Recent studies suggest that phages may counter dormancy-mediated defense through the expression of phage-carried sporulation genes during infection, which can alter the transitions between active and inactive states. By mining genomes and gut-derived metagenomes, we identified sporulation genes that are preferentially carried by phages that infect spore-forming bacteria. These included genes involved in chromosome partitioning, DNA damage repair, and cell wall-associated functions. In addition, phages contained homologs of sporulation-specific transcription factors, notably spo0A, the master regulator of sporulation, which could allow phages to control the complex genetic network responsible for spore development. Our findings suggest that phages could influence the formation of bacterial spores with implications for the health of the human gut microbiome, as well as bacterial communities in other environments. IMPORTANCE Phages acquire bacterial genes and use them to alter host metabolism in ways that enhance phage fitness. To date, most auxiliary genes replace or modulate enzymes that are used by the host for nutrition or energy production. However, phage fitness is affected by all aspects of host physiology, including decisions that reduce the metabolic activity of the cell. Here, we focus on endosporulation, a complex and ancient form of dormancy found among the Bacillota that involves hundreds of genes. By coupling homology searches with host classification, we identified 31 phage-carried homologs of sporulation genes that are mostly limited to phages infecting spore-forming bacteria. Nearly one-third of the homologs recovered were regulatory genes, suggesting that phages may manipulate host genetic networks by tapping into their control elements. Our findings also suggest a mechanism by which phages can overcome the defensive strategy of dormancy, which may be involved in coevolutionary dynamics of spore-forming bacteria.


Assuntos
Bacteriófagos , Animais , Humanos , Bacteriófagos/genética , Redes Reguladoras de Genes , Bactérias/genética , Esporos Bacterianos , Fatores de Transcrição/genética , Mamíferos/genética
8.
Environ Sci Technol ; 57(18): 7240-7253, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37099683

RESUMO

Ammonia monooxygenase and analogous oxygenase enzymes contribute to pharmaceutical biotransformation in activated sludge. In this study, we hypothesized that methane monooxygenase can enhance pharmaceutical biotransformation within the benthic, diffuse periphytic sediments (i.e., "biomat") of a shallow, open-water constructed wetland. To test this hypothesis, we combined field-scale metatranscriptomics, porewater geochemistry, and methane gas fluxes to inform microcosms targeting methane monooxygenase activity and its potential role in pharmaceutical biotransformation. In the field, sulfamethoxazole concentrations decreased within surficial biomat layers where genes encoding for the particulate methane monooxygenase (pMMO) were transcribed by a novel methanotroph classified as Methylotetracoccus. Inhibition microcosms provided independent confirmation that methane oxidation was mediated by the pMMO. In these same incubations, sulfamethoxazole biotransformation was stimulated proportional to aerobic methane-oxidizing activity and exhibited negligible removal in the absence of methane, in the presence of methane and pMMO inhibitors, and under anoxia. Nitrate reduction was similarly enhanced under aerobic methane-oxidizing conditions with rates several times faster than for canonical denitrification. Collectively, our results provide convergent in situ and laboratory evidence that methane-oxidizing activity can enhance sulfamethoxazole biotransformation, with possible implications for the combined removal of nitrogen and trace organic contaminants in wetland sediments.


Assuntos
Metano , Áreas Alagadas , Oxirredução , Minerais , Biotransformação
9.
Microbiol Resour Announc ; 12(1): e0035922, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36598276

RESUMO

Members of the genus Citricoccus are recognized as salt-tolerant soil microorganisms. Here, we report the metagenome-assembled genome sequence of a novel Citricoccus species recovered from untilled, surface agricultural soils in western Colorado.

10.
Environ Sci Technol ; 56(20): 14462-14477, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36197061

RESUMO

In shallow, open-water engineered wetlands, design parameters select for a photosynthetic microbial biomat capable of robust pharmaceutical biotransformation, yet the contributions of specific microbial processes remain unclear. Here, we combined genome-resolved metatranscriptomics and oxygen profiling of a field-scale biomat to inform laboratory inhibition microcosms amended with a suite of pharmaceuticals. Our analyses revealed a dynamic surficial layer harboring oxic-anoxic cycling and simultaneous photosynthetic, nitrifying, and denitrifying microbial transcription spanning nine bacterial phyla, with unbinned eukaryotic scaffolds suggesting a dominance of diatoms. In the laboratory, photosynthesis, nitrification, and denitrification were broadly decoupled by incubating oxic and anoxic microcosms in the presence and absence of light and nitrogen cycling enzyme inhibitors. Through combining microcosm inhibition data with field-scale metagenomics, we inferred microbial clades responsible for biotransformation associated with membrane-bound nitrate reductase activity (emtricitabine, trimethoprim, and atenolol), nitrous oxide reduction (trimethoprim), ammonium oxidation (trimethoprim and emtricitabine), and photosynthesis (metoprolol). Monitoring of transformation products of atenolol and emtricitabine confirmed that inhibition was specific to biotransformation and highlighted the value of oscillating redox environments for the further transformation of atenolol acid. Our findings shed light on microbial processes contributing to pharmaceutical biotransformation in open-water wetlands with implications for similar nature-based treatment systems.


Assuntos
Compostos de Amônio , Áreas Alagadas , Atenolol , Biotransformação , Desnitrificação , Emtricitabina/metabolismo , Metoprolol , Nitrato Redutases/metabolismo , Nitrificação , Nitrogênio/metabolismo , Óxido Nitroso , Oxigênio , Preparações Farmacêuticas , Fotossíntese , Trimetoprima , Água
11.
Nat Microbiol ; 7(9): 1419-1430, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36008619

RESUMO

Forest soil microbiomes have crucial roles in carbon storage, biogeochemical cycling and rhizosphere processes. Wildfire season length, and the frequency and size of severe fires have increased owing to climate change. Fires affect ecosystem recovery and modify soil microbiomes and microbially mediated biogeochemical processes. To study wildfire-dependent changes in soil microbiomes, we characterized functional shifts in the soil microbiota (bacteria, fungi and viruses) across burn severity gradients (low, moderate and high severity) 1 yr post fire in coniferous forests in Colorado and Wyoming, USA. We found severity-dependent increases of Actinobacteria encoding genes for heat resistance, fast growth, and pyrogenic carbon utilization that might enhance post-fire survival. We report that increased burn severity led to the loss of ectomycorrhizal fungi and less tolerant microbial taxa. Viruses remained active in post-fire soils and probably influenced carbon cycling and biogeochemistry via turnover of biomass and ecosystem-relevant auxiliary metabolic genes. Our genome-resolved analyses link post-fire soil microbial taxonomy to functions and reveal the complexity of post-fire soil microbiome activity.


Assuntos
Microbiota , Incêndios Florestais , Carbono , Florestas , Solo
12.
Microbiol Resour Announc ; 11(9): e0036022, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35938822

RESUMO

Microbial nitrification is critical to nitrogen loss from agricultural soils. Here, we report three thaumarchaeotal metagenome-assembled genomes (MAGs) representing a new species of Nitrososphaera. These genomes expand the representation of archaeal nitrifiers recovered from arid, agricultural soils.

13.
mSystems ; 7(4): e0051622, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35861508

RESUMO

Rivers have a significant role in global carbon and nitrogen cycles, serving as a nexus for nutrient transport between terrestrial and marine ecosystems. Although rivers have a small global surface area, they contribute substantially to worldwide greenhouse gas emissions through microbially mediated processes within the river hyporheic zone. Despite this importance, research linking microbial and viral communities to specific biogeochemical reactions is still nascent in these sediment environments. To survey the metabolic potential and gene expression underpinning carbon and nitrogen biogeochemical cycling in river sediments, we collected an integrated data set of 33 metagenomes, metaproteomes, and paired metabolomes. We reconstructed over 500 microbial metagenome-assembled genomes (MAGs), which we dereplicated into 55 unique, nearly complete medium- and high-quality MAGs spanning 12 bacterial and archaeal phyla. We also reconstructed 2,482 viral genomic contigs, which were dereplicated into 111 viral MAGs (vMAGs) of >10 kb in size. As a result of integrating gene expression data with geochemical and metabolite data, we created a conceptual model that uncovered new roles for microorganisms in organic matter decomposition, carbon sequestration, nitrogen mineralization, nitrification, and denitrification. We show how these metabolic pathways, integrated through shared resource pools of ammonium, carbon dioxide, and inorganic nitrogen, could ultimately contribute to carbon dioxide and nitrous oxide fluxes from hyporheic sediments. Further, by linking viral MAGs to these active microbial hosts, we provide some of the first insights into viral modulation of river sediment carbon and nitrogen cycling. IMPORTANCE Here we created HUM-V (hyporheic uncultured microbial and viral), an annotated microbial and viral MAG catalog that captures strain and functional diversity encoded in these Columbia River sediment samples. Demonstrating its utility, this genomic inventory encompasses multiple representatives of dominant microbial and archaeal phyla reported in other river sediments and provides novel viral MAGs that can putatively infect these. Furthermore, we used HUM-V to recruit gene expression data to decipher the functional activities of these MAGs and reconstruct their active roles in Columbia River sediment biogeochemical cycling. Ultimately, we show the power of MAG-resolved multi-omics to uncover interactions and chemical handoffs in river sediments that shape an intertwined carbon and nitrogen metabolic network. The accessible microbial and viral MAGs in HUM-V will serve as a community resource to further advance more untargeted, activity-based measurements in these, and related, freshwater terrestrial-aquatic ecosystems.


Assuntos
Ecossistema , Rios , Dióxido de Carbono/metabolismo , Archaea/genética , Ciclo do Nitrogênio , Nitrogênio/metabolismo
14.
Appl Environ Microbiol ; 88(11): e0022622, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35536051

RESUMO

Root exudation is one of the primary processes that mediate interactions between plant roots, microorganisms, and the soil matrix, yet the mechanisms by which exudation alters microbial metabolism in soils have been challenging to unravel. Here, utilizing distinct sorghum genotypes, we characterized the chemical heterogeneity between root exudates and the effects of that variability on soil microbial membership and metabolism. Distinct exudate chemical profiles were quantified and used to formulate synthetic root exudate treatments: a high-organic-acid treatment (HOT) and a high-sugar treatment (HST). To parse the response of the soil microbiome to different exudate regimens, laboratory soil reactors were amended with these root exudate treatments as well as a nonexudate control. Amplicon sequencing of the 16S rRNA gene illustrated distinct microbial diversity patterns and membership in response to HST, HOT, or control amendments. Exometabolite changes reflected these microbial community changes, and we observed enrichment of organic and amino acids, as well as possible phytohormones in the HST relative to the HOT and control. Linking the metabolic capacity of metagenome-assembled genomes in the HST to the exometabolite patterns, we identified microorganisms that could produce these phytohormones. Our findings emphasize the tractability of high-resolution multiomics tools to investigate soil microbiomes, opening the possibility of manipulating native microbial communities to improve specific soil microbial functions and enhance crop production. IMPORTANCE Decrypting the chemical interactions between plant roots and the soil microbiome is a gateway for future manipulation and management of the rhizosphere, a soil compartment critical to promoting plant fitness and yields. Our experimental results demonstrate how soil microbial community and genomic diversity is influenced by root exudates of differing chemical compositions and how changes in this microbiome result in altered production of plant-relevant metabolites. Together, these findings demonstrate the tractability of high-resolution multiomics tools to investigate soil microbiomes and provide new information on plant-soil environments useful for the development of efficient and precise microbiota management strategies in agricultural systems.


Assuntos
Microbiota , Solo , Exsudatos e Transudatos , Microbiota/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Plantas/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Rizosfera , Solo/química , Microbiologia do Solo
16.
Anal Bioanal Chem ; 414(7): 2317-2331, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35106611

RESUMO

Bottom-up proteomics is a powerful method for the functional characterization of mouse gut microbiota. To date, most of the bottom-up proteomics studies of the mouse gut rely on limited amounts of fecal samples. With mass-limited samples, the performance of such analyses is highly dependent on the protein extraction protocols and contaminant removal strategies. Here, protein extraction protocols (using different lysis buffers) and contaminant removal strategies (using different types of filters and beads) were systematically evaluated to maximize quantitative reproducibility and the number of identified proteins. Overall, our results recommend a protein extraction method using a combination of sodium dodecyl sulfate (SDS) and urea in Tris-HCl to yield the greatest number of protein identifications. These conditions led to an increase in the number of proteins identified from gram-positive bacteria, such as Firmicutes and Actinobacteria, which is a challenging task. Our analysis further confirmed these conditions led to the extraction of non-abundant bacterial phyla such as Proteobacteria. In addition, we found that, when coupled to our optimized extraction method, suspension trap (S-Trap) outperforms other contaminant removal methods by providing the most reproducible method while producing the greatest number of protein identifications. Overall, our optimized sample preparation workflow is straightforward and fast, and requires minimal sample handling. Furthermore, our approach does not require high amounts of fecal samples, a vital consideration in proteomics studies where mice produce smaller amounts of feces due to a particular physiological condition. Our final method provides efficient digestion of mouse fecal material, is reproducible, and leads to high proteomic coverage for both host and microbiome proteins.


Assuntos
Microbioma Gastrointestinal , Proteômica , Animais , Proteínas de Bactérias/metabolismo , Fezes/microbiologia , Camundongos , Proteômica/métodos , Reprodutibilidade dos Testes
17.
Microbiome ; 10(1): 5, 2022 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-35034639

RESUMO

BACKGROUND: Microbial colonization of subsurface shales following hydraulic fracturing offers the opportunity to study coupled biotic and abiotic factors that impact microbial persistence in engineered deep subsurface ecosystems. Shale formations underly much of the continental USA and display geographically distinct gradients in temperature and salinity. Complementing studies performed in eastern USA shales that contain brine-like fluids, here we coupled metagenomic and metabolomic approaches to develop the first genome-level insights into ecosystem colonization and microbial community interactions in a lower-salinity, but high-temperature western USA shale formation. RESULTS: We collected materials used during the hydraulic fracturing process (i.e., chemicals, drill muds) paired with temporal sampling of water produced from three different hydraulically fractured wells in the STACK (Sooner Trend Anadarko Basin, Canadian and Kingfisher) shale play in OK, USA. Relative to other shale formations, our metagenomic and metabolomic analyses revealed an expanded taxonomic and metabolic diversity of microorganisms that colonize and persist in fractured shales. Importantly, temporal sampling across all three hydraulic fracturing wells traced the degradation of complex polymers from the hydraulic fracturing process to the production and consumption of organic acids that support sulfate- and thiosulfate-reducing bacteria. Furthermore, we identified 5587 viral genomes and linked many of these to the dominant, colonizing microorganisms, demonstrating the key role that viral predation plays in community dynamics within this closed, engineered system. Lastly, top-side audit sampling of different source materials enabled genome-resolved source tracking, revealing the likely sources of many key colonizing and persisting taxa in these ecosystems. CONCLUSIONS: These findings highlight the importance of resource utilization and resistance to viral predation as key traits that enable specific microbial taxa to persist across fractured shale ecosystems. We also demonstrate the importance of materials used in the hydraulic fracturing process as both a source of persisting shale microorganisms and organic substrates that likely aid in sustaining the microbial community. Moreover, we showed that different physicochemical conditions (i.e., salinity, temperature) can influence the composition and functional potential of persisting microbial communities in shale ecosystems. Together, these results expand our knowledge of microbial life in deep subsurface shales and have important ramifications for management and treatment of microbial biomass in hydraulically fractured wells. Video Abstract.


Assuntos
Fraturamento Hidráulico , Microbiota , Animais , Bactérias/genética , Canadá , Microbiota/genética , Comportamento Predatório
18.
Nat Commun ; 12(1): 2466, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33927199

RESUMO

Microorganisms play vital roles in modulating organic matter decomposition and nutrient cycling in soil ecosystems. The enzyme latch paradigm posits microbial degradation of polyphenols is hindered in anoxic peat leading to polyphenol accumulation, and consequently diminished microbial activity. This model assumes that polyphenols are microbially unavailable under anoxia, a supposition that has not been thoroughly investigated in any soil type. Here, we use anoxic soil reactors amended with and without a chemically defined polyphenol to test this hypothesis, employing metabolomics and genome-resolved metaproteomics to interrogate soil microbial polyphenol metabolism. Challenging the idea that polyphenols are not bioavailable under anoxia, we provide metabolite evidence that polyphenols are depolymerized, resulting in monomer accumulation, followed by the generation of small phenolic degradation products. Further, we show that soil microbiome function is maintained, and possibly enhanced, with polyphenol addition. In summary, this study provides chemical and enzymatic evidence that some soil microbiota can degrade polyphenols under anoxia and subvert the assumed polyphenol lock on soil microbial metabolism.


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Compostos Orgânicos/metabolismo , Polifenóis/metabolismo , Poluentes do Solo/metabolismo , Anaerobiose , Reatores Biológicos/microbiologia , Microbiota/fisiologia , Compostos Orgânicos/química , Solo/química , Microbiologia do Solo , Áreas Alagadas
19.
Nucleic Acids Res ; 48(16): 8883-8900, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32766782

RESUMO

Microbial and viral communities transform the chemistry of Earth's ecosystems, yet the specific reactions catalyzed by these biological engines are hard to decode due to the absence of a scalable, metabolically resolved, annotation software. Here, we present DRAM (Distilled and Refined Annotation of Metabolism), a framework to translate the deluge of microbiome-based genomic information into a catalog of microbial traits. To demonstrate the applicability of DRAM across metabolically diverse genomes, we evaluated DRAM performance on a defined, in silico soil community and previously published human gut metagenomes. We show that DRAM accurately assigned microbial contributions to geochemical cycles and automated the partitioning of gut microbial carbohydrate metabolism at substrate levels. DRAM-v, the viral mode of DRAM, established rules to identify virally-encoded auxiliary metabolic genes (AMGs), resulting in the metabolic categorization of thousands of putative AMGs from soils and guts. Together DRAM and DRAM-v provide critical metabolic profiling capabilities that decipher mechanisms underpinning microbiome function.


Assuntos
Bactérias/classificação , Microbioma Gastrointestinal , Genômica/métodos , Metabolômica/métodos , Software , Microbiologia do Solo , Vírus/classificação , Humanos , Metagenoma , Anotação de Sequência Molecular/métodos
20.
Front Microbiol ; 11: 286, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32153553

RESUMO

Produced waters from hydraulically fractured shale formations give insight into the microbial ecology and biogeochemical conditions down-well. This study explores the potential for sulfide production by persistent microorganisms recovered from produced water samples collected from the Marcellus shale formation. Hydrogen sulfide is highly toxic and corrosive, and can lead to the formation of "sour gas" which is costly to refine. Furthermore, microbial colonization of hydraulically fractured shale could result in formation plugging and a reduction in well productivity. It is vital to assess the potential for sulfide production in persistent microbial taxa, especially when considering the trend of reusing produced waters as input fluids, potentially enriching for problematic microorganisms. Using most probable number (MPN) counts and 16S rRNA gene sequencing, multiple viable strains of bacteria were identified from stored produced waters, mostly belonging to the Genus Halanaerobium, that were capable of growth via fermentation, and produced sulfide when supplied with thiosulfate. No sulfate-reducing bacteria (SRB) were detected through culturing, despite the detection of relatively low numbers of sulfate-reducing lineages by high-throughput 16S rRNA gene sequencing. These results demonstrate that sulfidogenic produced water populations remain viable for years post production and, if left unchecked, have the potential to lead to natural gas souring during shale gas extraction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...