Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38230659

RESUMO

The relentless growth of metal-organic framework (MOF) chemistry is paralleled by the persistent urge to control the MOFs physical and chemical properties. While this control is mostly achieved by solvothermal syntheses, room temperature procedures stand out as more convenient and sustainable pathways for the production of MOF materials. Herein, a novel approach to control the crystal size and defect numbers of a dihydroxy-functionalized zirconium-based metal-organic framework (UiO-66(OH)2) at room temperature is reported. Through a reaction-diffusion method in a 1D system, zirconium salt was diffused into an agar gel matrix containing the organic linker to form nanocrystals of UiO-66(OH)2 with tailored structural features that include crystal size distribution, surface area, and defect number. By variation of the synthesis parameters of the system, hierarchical MOF nanocrystals with an average size ranging from 30 nm up to 270 nm and surface areas between 201 and 500 m2 g-1 were obtained in a one-pot synthetic route. To stress the importance of crystal size, morphology, and structural defects on the adsorption properties of UiO-66(OH)2, the adsorption capacity of the MOF toward methylene blue dye was tested with the largest and most defected crystals achieving the best performance of 202 mg/g. The distinctive structural characteristics including the hierarchical micromesoporous frameworks, the nanosized particles, and the highly defective crystals obtained by our synthesis procedure are deemed challenging through the conventional synthesis methods. This work paves the way for engineering MOF crystals with tunable physical and chemical properties, using a green synthesis procedure, for their advantageous use in many desirable applications.

2.
Langmuir ; 39(27): 9503-9513, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37384737

RESUMO

In this work, we utilized electrospinning to develop advanced composite membranes of polyvinyl chloride (PVC) loaded with postmetalated metal-organic frameworks (MOFs), specifically UiO-66(COOH)2-Ag and ZIF-8-Ag. This innovative technique led to the creation of highly stable PVC/MOFs-Ag membrane composites, which were thoroughly characterized using various analytical techniques, including scanning electron microscopy, powder X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, porosity analysis, and water contact angle measurement. The results verified the successful integration of MOF crystals within the nanofibrous PVC membranes. The obtained composites exhibited larger fiber diameters for 5 and 10% MOF loadings and a smaller diameter for 20% loading. Additionally, they displayed greater average pore sizes than traditional PVC membranes across most MOF loading percentages. Furthermore, we examined the antibacterial properties of the fabricated membranes at different MOFs-Ag loadings. The findings revealed that the membranes demonstrated significant antibacterial activity up to 95% against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria as the MOFs-Ag loading increased, even when maintaining a constant silver concentration. This indicates a contact-based inhibition mechanism. The outcomes of this study have crucial implications for the development of novel, stable, and highly effective antibacterial materials, which could serve as superior alternatives for face masks and be integrated into materials requiring regular decontamination, as well as potential water filtration systems.

3.
J Am Chem Soc ; 144(36): 16433-16446, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36047929

RESUMO

Formic acid is considered as one of the most promising liquid organic hydrogen carriers. Its catalytic dehydrogenation process generally suffers from low activity, low reaction selectivity, low stability of the catalysts, and/or the use of noble-metal-based catalysts. Herein we report a highly selective, efficient, and noble-metal-free photocatalyst for the dehydrogenation of formic acid. This catalyst, UiO-66(COOH)2-Cu, is built by postmetalation of a carboxylic-functionalized Zr-MOF with copper. The visible-light-driven photocatalytic dehydrogenation process through the release of hydrogen and carbon dioxide has been monitored in real-time via operando Fourier transform infrared spectroscopy, which revealed almost 100% selectivity with high stability (over 3 days) and a conversion yield exceeding 60% (around 5 mmol·gcat-1·h-1) under ambient conditions. These performance indicators make UiO-66(COOH)2-Cu among the top photocatalysts for formic acid dehydrogenation. Interestingly, the as-prepared UiO-66(COOH)2-Cu hetero-nanostructure was found to be moderately active under solar irradiation during an induction phase, whereupon it undergoes an in-situ restructuring process through intraframework cross-linking with the formation of the anhydride analogue structure UiO-66(COO)2-Cu and nanoclustering of highly active and stable copper sites, as evidenced by the operando studies coupled with steady-state isotopic transient kinetic experiments, transmission electron microscopy and X-ray photoelectron spectroscopy analyses, and Density Functional Theory calculations. Beyond revealing outstanding catalytic performance for UiO-66(COO)2-Cu, this work delivers an in-depth understanding of the photocatalytic reaction mechanism, which involves evolutive behavior of the postmetalated copper as well as the MOF framework over the reaction. These key findings pave the way toward the engineering of new and efficient catalysts for photocatalytic dehydrogenation of formic acid.

4.
ACS Appl Mater Interfaces ; 14(1): 2015-2022, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34931799

RESUMO

Photocatalytic CO2 reduction into formate (HCOO-) has been widely studied with semiconductor and molecule-based systems, but it is rarely investigated with covalent organic frameworks (COFs). Herein, we report a novel donor-acceptor COF named Co-PI-COF composed of isoindigo and metallated porphyrin subunits that exhibits high catalytic efficiency (∼50 µmol formate g-1 h-1) at low-power visible-light irradiation and in the absence of rare metal cocatalysts. Density functional theory calculations and experimental diffuse-reflectance measurements are used to explain the origin of catalytic efficiency and the particularly low band gap (0.56 eV) in this material. The mechanism of photocatalysis is also studied experimentally and is found to involve electron transfer from the sacrificial agent to the excited Co-PI-COF. The observed high-efficiency conversion could be ascribed to the enhanced CO2 adsorption on the coordinatively unsaturated cobalt centers, the narrow band gap, and the efficient transfer of the charge originating from the postsynthetic metallation. It is anticipated that this study will pave the way toward the design of new simple and efficient catalysts for photocatalytic CO2 reduction into useful products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...