Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Orofac Orthop ; 81(1): 10-21, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31591651

RESUMO

PURPOSE: Orthodontic treatment is based on the principle of force application to teeth and subsequently to the surrounding tissues and periodontal cells. Sequestosome 1 (SQSTM1) is a well-known marker for autophagy, which is an important cellular mechanism of adaptation to stress. The aim of this study was to analyze whether biomechanical loading conditions regulate SQSTM1 in periodontal cells and tissues, thereby providing further information on the role of autophagy in orthodontic tooth movement. METHODS: Periodontal ligament (PDL) fibroblasts were exposed to cyclic tensile strain of low magnitude (3%, CTSL), and the regulation of autophagy-associated targets was determined with an array-based approach. SQSTM1 was selected for further biomechanical loading experiments with dynamic and static tensile strain and assessed via real-time polymerase chain reaction (RT-PCR) and immunoblotting. Signaling pathways involved in SQSTM1 activation were analyzed by using specific inhibitors, including an autophagy inhibitor. Finally, SQSTM1 expression was analyzed in gingival biopsies and histological sections of rats in presence and absence of orthodontic forces. RESULTS: Multiple autophagy-associated targets were regulated by CTSL in PDL fibroblasts. All biomechanical loading conditions tested increased the SQSTM1 expression significantly. Stimulatory effects of CTSL on SQSTM1 expression were diminished by inhibition of the c­Jun N­terminal kinase (JNK) pathway and of autophagy. Increased SQSTM1 levels after CTSL were confirmed by immunoblotting. Orthodontic force application also led to significantly elevated SQTSM1 levels in the gingiva and PDL of treated animals as compared to control. CONCLUSIONS: Our in vitro and in vivo findings provide evidence of a role of SQSTM1 and thereby autophagy in orthodontic tooth movement.


Assuntos
Autofagia , Dente , Animais , Fenômenos Biomecânicos , Ligamento Periodontal , Ratos , Estresse Mecânico , Técnicas de Movimentação Dentária
2.
Clin Oral Investig ; 22(8): 2933-2941, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29442188

RESUMO

OBJECTIVES: Damage-regulated autophagy modulator (DRAM) 1 is a p53 target gene with possible involvement in oral inflammation and infection. This study sought to examine the presence and regulation of DRAM1 in periodontal diseases. MATERIAL AND METHODS: In vitro, human periodontal ligament fibroblasts were exposed to interleukin (IL)-1ß and Fusobacterium nucleatum for up to 2 days. The DRAM1 synthesis and its regulation were analyzed by real-time PCR, immunocytochemistry, and ELISA. Expressions of other autophagy-associated genes were also studied by real-time PCR. In vivo, synthesis of DRAM1 in gingival biopsies from rats and patients with and without periodontal disease was examined by real-time PCR and immunohistochemistry. For statistics, ANOVA and post-hoc tests were applied (p < 0.05). RESULTS: In vitro, DRAM1 was significantly upregulated by IL-1ß and F. nucleatum over 2 days and a wide range of concentrations. Additionally, increased DRAM1 protein levels in response to both stimulants were observed. Autophagy-associated genes ATG3, BAK1, HDAC6, and IRGM were also upregulated under inflammatory or infectious conditions. In vivo, the DRAM1 gene expression was significantly enhanced in rat gingival biopsies with induced periodontitis as compared to control. Significantly increased DRAM1 levels were also detected in human gingival biopsies from sites of periodontitis as compared to healthy sites. CONCLUSION: Our data provide novel evidence that DRAM1 is increased under inflammatory and infectious conditions in periodontal cells and tissues, suggesting a pivotal role of DRAM1 in oral inflammation and infection. CLINICAL RELEVANCE: DRAM1 might be a promising target in future diagnostic and treatment strategies for periodontitis.


Assuntos
Fibroblastos/efeitos dos fármacos , Fusobacterium nucleatum , Proteínas de Membrana/biossíntese , Adolescente , Animais , Autofagia , Biópsia , Criança , Ensaio de Imunoadsorção Enzimática , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Interleucina-1beta/farmacologia , Ligamento Periodontal/citologia , Periodontite/microbiologia , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima
3.
Mediators Inflamm ; 2017: 4786170, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29362520

RESUMO

Cathepsin S is a cysteine protease and regulator of autophagy with possible involvement in periodontitis. The objective of this study was to investigate whether cathepsin S is involved in the pathogenesis of periodontal diseases. Human periodontal fibroblasts were cultured under inflammatory and infectious conditions elicited by interleukin-1ß and Fusobacterium nucleatum, respectively. An array-based approach was used to analyze differential expression of autophagy-associated genes. Cathepsin S was upregulated most strongly and thus further studied in vitro at gene and protein levels. In vivo, gingival tissue biopsies from rats with ligature-induced periodontitis and from periodontitis patients were also analyzed at transcriptional and protein levels. Multiple gene expression changes due to interleukin-1ß and F. nucleatum were observed in vitro. Both stimulants caused a significant cathepsin S upregulation. A significantly elevated cathepsin S expression in gingival biopsies from rats with experimental periodontitis was found in vivo, as compared to that from control. Gingival biopsies from periodontitis patients showed a significantly higher cathepsin S expression than those from healthy gingiva. Our findings provide original evidence that cathepsin S is increased in periodontal cells and tissues under inflammatory and infectious conditions, suggesting a critical role of this autophagy-associated molecule in the pathogenesis of periodontitis.


Assuntos
Catepsinas/fisiologia , Periodontite/etiologia , Adolescente , Adulto , Animais , Autofagia/fisiologia , Catepsinas/análise , Células Cultivadas , Criança , Feminino , Gengiva/metabolismo , Humanos , Masculino , Periodontite/enzimologia , Ratos , Adulto Jovem
4.
Mol Oral Microbiol ; 29(6): 258-69, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25052571

RESUMO

Periodontitis is a chronic inflammatory disease of the periodontium, which is caused by pathogenic bacteria in combination with other risk factors. The bacteria induce an immunoinflammatory host response, which can lead to irreversible matrix degradation and bone resorption. Periodontitis can be successfully treated. To achieve regenerative periodontal healing, bioactive molecules, such as enamel matrix derivative (EMD), are applied during periodontal surgery. Recently, it has been shown that obesity is associated with periodontitis and compromised healing after periodontal therapy. The mechanisms underlying these associations are not well understood so far, but adipokines may be a pathomechanistic link. Adipokines are bioactive molecules that are secreted by the adipose tissue, and that regulate insulin sensitivity and energy expenditure, but also inflammatory and healing processes. It has also been demonstrated that visfatin and leptin increase the synthesis of proinflammatory and proteolytic molecules, whereas adiponectin downregulates the production of such mediators in periodontal cells. In addition, visfatin and leptin counteract the beneficial effects of EMD, whereas adiponectin enhances the actions of EMD on periodontal cells. Since visfatin and leptin levels are increased and adiponectin levels are reduced in obesity, these adipokines could be a pathomechanistic link whereby obesity and obesity-related diseases enhance the risk for periodontitis and compromised periodontal healing. Recent studies have also revealed that adipokines, such as visfatin, leptin and adiponectin, are produced in periodontal cells and regulated by periodontopathogenic bacteria. Therefore, adipokines may also represent a mechanism whereby periodontal infections can impact on systemic diseases.


Assuntos
Adipocinas/fisiologia , Obesidade/complicações , Periodontite/complicações , Periodontite/fisiopatologia , Adipocinas/biossíntese , Adiponectina/metabolismo , Humanos , Leptina/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Periodontite/microbiologia , Periodontite/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...